AStat/domains/sign.ml
2024-05-29 11:47:47 +02:00

87 lines
3.1 KiB
OCaml

open Naked
open Abstract_syntax_tree
module Signs : NAKED_VALUE_DOMAIN = struct
type t = N | Z | P (*Negative/Zero/Positive (signs include 0)*)
let const z = if (Z.equal Z.zero z) then Z else
(if Z.lt z Z.zero then N else P)
let rand a b = if Z.leq b Z.zero then N
else (if Z.geq a Z.zero then P else raise NeedTop) (*We know a < b*)
let minus a = match a with
| N -> P | Z -> Z | P -> N
let rec binary a b op = match op with
| AST_PLUS -> (match a, b with
| P, P | P, Z | Z, P -> P
| Z, Z -> Z
| _ -> N)
| AST_MINUS -> binary a (minus b) AST_PLUS
| AST_MULTIPLY -> (match a, b with
| P, P | N, N -> P
| Z, _ | _, Z -> Z
| _ -> N)
| AST_DIVIDE -> (match a, b with
| _, Z -> raise Absurd
| _ -> binary a b AST_MULTIPLY)
| AST_MODULO -> a
let is_only_zero a = match a with
| Z -> true | _ -> false
let multiples_of a = match a with
| Z -> Z | _ -> raise NeedTop
let divisors_of a = match a with
| Z -> Z | _ -> raise NeedTop
let remainders a = a
let convex_sym a = match a with
| Z -> Z | _ -> raise NeedTop
let compatible a op = match op with
| AST_EQUAL -> a
| AST_NOT_EQUAL -> raise NeedTop
| AST_LESS | AST_LESS_EQUAL -> if a == P || a == Z then P else raise NeedTop
| AST_GREATER | AST_GREATER_EQUAL -> if a == N || a == Z then N else raise NeedTop
let compare a b op = match op with
| AST_EQUAL -> if a <> b then Z, Z else a, b
| AST_NOT_EQUAL -> if a == b && a == Z then raise Absurd else a, b
| AST_LESS | AST_LESS_EQUAL -> if b == N || b == Z then
(match a with | P -> Z | Z -> Z | N -> N), b
else a, b (*if b is P then we learn nothing*)
| AST_GREATER | AST_GREATER_EQUAL -> if a == N || a == Z then
a, (match b with | P -> Z | Z -> Z | N -> N)
else a,b
let meet x y = match x,y with
|P, N | N, P -> raise Absurd
|Z, _ | _, Z -> Z
|N, N | P, P -> x
let rec bwd_binary a b op r = match op with
| AST_PLUS -> (match r with
| P -> (if a <> P && b <> P then Z,Z else a,b)
| N -> (if a <> N && b <> N then Z,Z else a,b)
| Z -> if a == b then Z,Z else a,b)
| AST_MINUS -> let a', nb' = bwd_binary a (minus b) AST_PLUS r in (a', minus nb')
| AST_MULTIPLY -> (match r with
| Z -> a,b (*all products must be zero, so one is Z, but we don't know which...*)
| P -> (match a, b with
| P, P | N, N -> a,b
| Z, _ | _, Z -> a,b
| N, P | P, N -> a,b) (*all products are 0, so at least one is Z, but...*)
| N -> let a', nb' = bwd_binary a (minus b) AST_MULTIPLY (minus r) in (a', minus nb'))
| AST_DIVIDE -> if b == Z then raise Absurd else (*Here zeros don't bother us!*)
(match r with
| Z -> Z,b
| P -> b,b
| N -> b, minus b)
| AST_MODULO -> if b == Z then raise Absurd else
(meet a r,b)
let join x y = match x,y with
| P, N | N, P -> raise NeedTop
| Z, a | a, Z -> a
| N, N | P, P -> x
let widen x y = join x y
let narrow x y = meet x y
let subset x y = x == y || (x == Z)
let print out x = match x with
| Z -> Format.fprintf out "0"
| N -> Format.fprintf out "<=0"
| P -> Format.fprintf out ">=0"
end