open Naked open Abstract_syntax_tree module Interval : NAKED_VALUE_DOMAIN = struct type t = { lower : Z.t; upper : Z.t } let const a = { lower = a; upper = a } let rand a b = { lower = Z.min a b; upper = Z.max a b } let infty = Z.of_int64_unsigned Int64.max_int let min_infty = Z.neg infty let pos = rand Z.one infty let neg = rand min_infty Z.minus_one let rand3 a b c = let mi = List.fold_left Z.min a [ a; b; c ] in let ma = List.fold_left Z.max a [ a; b; c ] in rand mi ma let rand4 a b c d = let mi = List.fold_left Z.min a [ a; b; c; d ] in let ma = List.fold_left Z.max a [ a; b; c; d ] in rand mi ma let minus z = rand (Z.neg z.upper) (Z.neg z.lower) let join z1 z2 = rand4 z1.lower z2.lower z1.upper z2.upper let meet z1 z2 = if Z.lt z1.upper z2.lower || Z.lt z2.upper z1.lower then raise Absurd else rand (Z.max z1.lower z2.lower) (Z.min z1.upper z2.upper) let widen z1 z2 = rand (if Z.lt z1.lower z2.lower then z1.lower else min_infty) (if Z.gt z1.upper z2.upper then z1.upper else infty) let narrow = meet let subset z1 z2 = Z.geq z1.lower z2.lower && Z.leq z1.upper z2.upper let binary z1 z2 = function | AST_PLUS -> rand (Z.add z1.lower z2.lower) (Z.add z1.upper z2.upper) | AST_MINUS -> rand (Z.sub z1.lower z2.upper) (Z.sub z1.upper z2.lower) | AST_MULTIPLY -> rand4 (Z.mul z1.lower z2.lower) (Z.mul z1.upper z2.lower) (Z.mul z1.lower z2.upper) (Z.mul z1.upper z2.upper) | AST_DIVIDE -> if Z.sign z2.lower <> Z.sign z2.upper || Z.sign z2.lower = 0 then raise Absurd else rand4 (Z.div z1.lower z2.lower) (Z.div z1.upper z2.lower) (Z.div z1.lower z2.upper) (Z.div z1.upper z2.upper) | AST_MODULO -> if Z.sign z2.lower <> Z.sign z2.upper || Z.sign z2.lower = 0 then raise Absurd else rand4 (Z.rem z1.lower z2.lower) (Z.rem z1.upper z2.lower) (Z.rem z1.lower z2.upper) (Z.rem z1.upper z2.upper) let is_only_zero z = Z.equal z.lower Z.zero && Z.equal z.upper Z.zero let multiples_of z = if is_only_zero z then const Z.zero else raise NeedTop let divisors_of z = if is_only_zero z then const Z.zero else raise NeedTop let remainders z = if is_only_zero z then const Z.zero else raise NeedTop let convex_sym z = if is_only_zero z then const Z.zero else raise NeedTop let compatible z = function | AST_EQUAL -> z | AST_NOT_EQUAL -> raise NeedTop | AST_LESS -> if Z.equal z.lower min_infty then raise Absurd else rand min_infty z.lower | AST_LESS_EQUAL -> rand min_infty z.lower | AST_GREATER -> if Z.equal z.upper infty then raise Absurd else rand z.upper infty | AST_GREATER_EQUAL -> rand z.upper infty let rec compare z1 z2 = function | AST_EQUAL -> let z = meet z1 z2 in (z, z) | AST_NOT_EQUAL -> if Z.equal z1.lower z1.upper && Z.equal z1.upper z2.lower && Z.equal z2.lower z2.upper then raise Absurd else (z1, z2) | AST_LESS -> if Z.leq z2.upper z1.lower then raise Absurd else let r1 = rand z1.lower (if Z.geq z1.upper z2.upper then Z.pred z2.upper else z1.upper) in let r2 = rand (if Z.geq z1.lower z2.lower then Z.succ z2.lower else z1.lower) z2.upper in (r1, r2) | AST_LESS_EQUAL -> if Z.lt z2.upper z1.lower then raise Absurd else let r1 = rand z1.lower (Z.min z1.upper z2.upper) in let r2 = rand (Z.max z1.lower z2.lower) z2.upper in (r1, r2) | AST_GREATER -> let r1, r2 = compare z2 z1 AST_LESS in (r2, r1) | AST_GREATER_EQUAL -> let r1, r2 = compare z2 z1 AST_LESS_EQUAL in (r2, r1) let has_zero z = Z.leq z.lower Z.zero && Z.geq z.upper Z.zero let has_one z = Z.leq z.lower Z.one && Z.geq z.upper Z.one let has_minus_one z = Z.leq z.lower Z.minus_one && Z.geq z.upper Z.minus_one let three_part z1 z2 op = if has_one z2 then if has_minus_one z2 then let a = meet pos z2 in let b = meet neg z2 in join (binary z1 a op) (binary z1 b op) else let a = meet pos z2 in binary z1 a op else let a = meet neg z2 in binary z1 a op let bwd_binary z1 z2 op r = match op with | AST_PLUS -> (meet z1 (binary r z2 AST_MINUS), meet z2 (binary r z1 AST_MINUS)) | AST_MINUS -> (meet z1 (binary r z2 AST_PLUS), meet z2 (binary z1 r AST_MINUS)) | AST_MULTIPLY -> if is_only_zero z1 || is_only_zero z2 then if has_zero r then z1, z2 else raise Absurd else let z2' = meet z2 (three_part r z1 AST_DIVIDE) in let z1' = meet z1 (three_part r z2 AST_DIVIDE) in if has_zero r then ( (if has_zero z1' then join z1' (const Z.zero) else z1'), if has_zero z2' then join z2' (const Z.zero) else z2' ) else (z1', z2') | AST_DIVIDE -> (meet z1 (binary r z2 AST_MULTIPLY), meet z2 (binary z1 r AST_DIVIDE)) | AST_MODULO -> (z1, z2) let print fmt z = Format.pp_print_string fmt "["; Z.pp_print fmt z.lower; Format.pp_print_string fmt "; "; Z.pp_print fmt z.upper; Format.pp_print_string fmt "]" end