open Abstract_syntax_tree open Value_domain exception NeedTop exception Absurd module type NAKED_VALUE_DOMAIN = sig type t val const: Z.t -> t val rand: Z.t -> Z.t -> t val minus: t -> t val binary: t -> t -> int_binary_op -> t val is_only_zero: t -> bool val multiples_of: t -> t val divisors_of: t -> t val remainders: t -> t val convex_sym: t -> t val compatible: t -> compare_op -> t (* returns the arguments possibly on the right of a comp w t*) val compare: t -> t -> compare_op -> (t*t) val bwd_binary: t -> t -> int_binary_op -> t -> (t*t) val join: t -> t -> t val meet: t -> t -> t val widen: t -> t -> t val narrow: t -> t -> t val subset: t -> t -> bool val print: Format.formatter -> t -> unit end module AddTopBot (N : NAKED_VALUE_DOMAIN) (*: VALUE_DOMAIN*) = struct type t = Bot | Top | V of N.t let top = Top let bottom = Bot let is_bottom a = match a with | Bot -> true | _ -> false let is_top a = match a with | Top -> true | _ -> false let const c = try V (N.const c) with NeedTop -> Top let rand a b = try (if Z.equal a b then V (N.const a) else (if Z.leq a b then V (N.rand a b) else Bot)) with NeedTop -> Top let unary a op = try (match op with | AST_UNARY_PLUS -> a | AST_UNARY_MINUS -> (match a with | Top -> Top | Bot -> Bot | V t -> V (N.minus t)) ) with NeedTop -> Top let binary a b op = try( if (is_bottom a || is_bottom b) then (Bot) else match op with | AST_PLUS -> if (is_top a || is_top b) then Top else let V a', V b' = a, b in V (N.binary a' b' AST_PLUS) | AST_MINUS -> if (is_top a || is_top b) then Top else let V a', V b' = a, b in V (N.binary a' b' AST_MINUS) | AST_MULTIPLY -> (match a, b with | Top, Top -> Top | Top, V x | V x, Top -> V (N.multiples_of x) | V x, V y -> V(N.binary x y AST_MULTIPLY)) | AST_DIVIDE -> (match a, b with | Top, Top -> Top | Top, V x -> if N.is_only_zero x then Bot else Top | V x, Top -> V(N.divisors_of x) | V x, V y -> if N.is_only_zero y then Bot else V(N.binary x y AST_DIVIDE)) | AST_MODULO -> (match a, b with | Top, Top -> Top | Top, V x -> if N.is_only_zero x then Bot else V(N.convex_sym x) (* convex symetric hull *) | V x, Top -> V(N.remainders x) | V x, V y -> if N.is_only_zero y then Bot else V(N.binary x y AST_MODULO)) ) with NeedTop -> Top let compare a b op = match a, b with | Bot, _ | _, Bot -> Bot, Bot | Top, Top -> Top, Top (* We are non-relational ! *) | V x, Top -> V x, (try(V (N.compatible x op))with NeedTop->Top)(*We can't learn anything comparing to Top*) | Top, V x -> (try(V (N.compatible x (reverse op)))with NeedTop->Top), V x | V x, V y -> try( let a', b' = (N.compare x y op) in V a', V b' )with Absurd -> Bot,Bot let bwd_unary x op r = match r with | Top -> Top | Bot -> Bot | V r' -> (match x with | Top -> (match op with | AST_UNARY_PLUS -> r | AST_UNARY_MINUS -> V(N.minus r')) | Bot -> Bot | V x' -> (match op with | AST_UNARY_PLUS -> (try(V (N.meet x' r') )with Absurd -> Bot) | AST_UNARY_MINUS -> try( V(N.meet x' (N.minus r')))with Absurd->Bot)) let bwd_binary x y op r = match r with | Top -> x, y | Bot -> (match op with | AST_DIVIDE | AST_MODULO -> x, (try (V (N.const Z.zero) )with NeedTop->Top) | _ -> x, y (* This can only happen if one of x or y was already Bot *) ) | V r' -> (match x, y with | Bot, _| _, Bot -> x,y | Top, Top -> x, y (*TODO: add some trivialities like a / b = 0 implies a == 0 *) | V a, Top -> (match op with | AST_PLUS -> (V a, V (N.binary r' a AST_MINUS)) | AST_MINUS -> (V a, V (N.binary a r' AST_MINUS)) (* If a can't be null, the values described by b are exactly the values taken by r'/a (there aren't any rounding issues because r' = ab IMPLIES b = r'/a.) If a and r' can be null, we can't deduce anything. If a can be null but r' can't, then b can take any value r'/a can (when a != 0) *) | AST_MULTIPLY -> let an, rn = N.subset (N.const Z.zero) a, N.subset (N.const Z.zero) r' in (match an, rn with | false, _ -> (V a, V (N.binary r' a AST_DIVIDE)) | true, false -> if N.is_only_zero a then (V a, Bot) else V a, V (N.binary r' a AST_DIVIDE) | true, true -> (V a, Top)) | AST_DIVIDE | AST_MODULO -> x,y) (* divide has rounding issues, modulo makes my head hurt *) | Top, V a -> (match op with | AST_PLUS -> (V (N.binary r' a AST_MINUS), V a) | AST_MINUS -> (V (N.binary r' a AST_PLUS), V a) | AST_MULTIPLY -> let an, rn = N.subset (N.const Z.zero) a, N.subset (N.const Z.zero) r' in (match an, rn with | false, _ -> (V a, V (N.binary r' a AST_DIVIDE)) | true, false -> if N.is_only_zero a then (V a, Bot) else V a, V (N.binary r' a AST_DIVIDE) | true, true -> (V a, Top)) | AST_DIVIDE | AST_MODULO -> x,y) | V a, V b -> try( let a',b' = (N.bwd_binary a b op r') in V a', V b' )with Absurd->(Bot,Bot) ) let join a b = try (match a, b with | Top, x | x, Top -> Top | Bot, x | x, Bot -> x | V a', V b' -> V(N.join a' b') )with NeedTop -> Top let meet a b = match a, b with | Bot, x | x, Bot -> Bot | Top, x | x, Top -> x | V a', V b' -> try( V(N.meet a' b') )with Absurd -> Bot let widen a b = try( match a, b with | Bot, x | x, Bot -> x | Top, x | x, Top -> Top | V a', V b' -> V(N.widen a' b') )with NeedTop->Top let narrow a b = match a, b with | Bot, x | x, Bot -> Bot | Top, x | x, Top -> x | V a', V b' -> try( V(N.narrow a' b') )with Absurd -> Bot let subset a b = match a, b with | Bot, b -> true | b, Bot -> false | b, Top -> true | Top, b -> false | V a', V b' -> (N.subset a' b') let print out a = match a with | Top -> Format.fprintf out "T" | Bot -> Format.fprintf out "B" | V a' -> N.print out a' end