/* * Wrapper functions for libwolfssl * Copyright (c) 2004-2017, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "crypto.h" #define WOLFSSL_AES_DIRECT #define HAVE_AESGCM #define HAVE_AES_KEYWRAP #define WOLFSSL_SHA384 #define WOLFSSL_SHA512 #define WOLFSSL_CMAC #define HAVE_ECC #define USE_FAST_MATH #define WOLFSSL_KEY_GEN #include /* wolfSSL headers */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_FIPS int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { Md4 md4; size_t i; if (TEST_FAIL()) return -1; wc_InitMd4(&md4); for (i = 0; i < num_elem; i++) wc_Md4Update(&md4, addr[i], len[i]); wc_Md4Final(&md4, mac); return 0; } int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { wc_Md5 md5; size_t i; if (TEST_FAIL()) return -1; wc_InitMd5(&md5); for (i = 0; i < num_elem; i++) wc_Md5Update(&md5, addr[i], len[i]); wc_Md5Final(&md5, mac); return 0; } #endif /* CONFIG_FIPS */ int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { wc_Sha sha; size_t i; if (TEST_FAIL()) return -1; wc_InitSha(&sha); for (i = 0; i < num_elem; i++) wc_ShaUpdate(&sha, addr[i], len[i]); wc_ShaFinal(&sha, mac); return 0; } #ifndef NO_SHA256_WRAPPER int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { wc_Sha256 sha256; size_t i; if (TEST_FAIL()) return -1; wc_InitSha256(&sha256); for (i = 0; i < num_elem; i++) wc_Sha256Update(&sha256, addr[i], len[i]); wc_Sha256Final(&sha256, mac); return 0; } #endif /* NO_SHA256_WRAPPER */ #ifdef CONFIG_SHA384 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { wc_Sha384 sha384; size_t i; if (TEST_FAIL()) return -1; wc_InitSha384(&sha384); for (i = 0; i < num_elem; i++) wc_Sha384Update(&sha384, addr[i], len[i]); wc_Sha384Final(&sha384, mac); return 0; } #endif /* CONFIG_SHA384 */ #ifdef CONFIG_SHA512 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { wc_Sha512 sha512; size_t i; if (TEST_FAIL()) return -1; wc_InitSha512(&sha512); for (i = 0; i < num_elem; i++) wc_Sha512Update(&sha512, addr[i], len[i]); wc_Sha512Final(&sha512, mac); return 0; } #endif /* CONFIG_SHA512 */ static int wolfssl_hmac_vector(int type, const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac, unsigned int mdlen) { Hmac hmac; size_t i; (void) mdlen; if (TEST_FAIL()) return -1; if (wc_HmacSetKey(&hmac, type, key, (word32) key_len) != 0) return -1; for (i = 0; i < num_elem; i++) if (wc_HmacUpdate(&hmac, addr[i], len[i]) != 0) return -1; if (wc_HmacFinal(&hmac, mac) != 0) return -1; return 0; } #ifndef CONFIG_FIPS int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return wolfssl_hmac_vector(WC_MD5, key, key_len, num_elem, addr, len, mac, 16); } int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_FIPS */ int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return wolfssl_hmac_vector(WC_SHA, key, key_len, num_elem, addr, len, mac, 20); } int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); } #ifdef CONFIG_SHA256 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return wolfssl_hmac_vector(WC_SHA256, key, key_len, num_elem, addr, len, mac, 32); } int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA256 */ #ifdef CONFIG_SHA384 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return wolfssl_hmac_vector(WC_SHA384, key, key_len, num_elem, addr, len, mac, 48); } int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA384 */ #ifdef CONFIG_SHA512 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return wolfssl_hmac_vector(WC_SHA512, key, key_len, num_elem, addr, len, mac, 64); } int hmac_sha512(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA512 */ int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, int iterations, u8 *buf, size_t buflen) { if (wc_PBKDF2(buf, (const byte*)passphrase, os_strlen(passphrase), ssid, ssid_len, iterations, buflen, WC_SHA) != 0) return -1; return 0; } #ifdef CONFIG_DES int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) { Des des; u8 pkey[8], next, tmp; int i; /* Add parity bits to the key */ next = 0; for (i = 0; i < 7; i++) { tmp = key[i]; pkey[i] = (tmp >> i) | next | 1; next = tmp << (7 - i); } pkey[i] = next | 1; wc_Des_SetKey(&des, pkey, NULL, DES_ENCRYPTION); wc_Des_EcbEncrypt(&des, cypher, clear, DES_BLOCK_SIZE); return 0; } #endif /* CONFIG_DES */ void * aes_encrypt_init(const u8 *key, size_t len) { Aes *aes; if (TEST_FAIL()) return NULL; aes = os_malloc(sizeof(Aes)); if (!aes) return NULL; if (wc_AesSetKey(aes, key, len, NULL, AES_ENCRYPTION) < 0) { os_free(aes); return NULL; } return aes; } int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) { wc_AesEncryptDirect(ctx, crypt, plain); return 0; } void aes_encrypt_deinit(void *ctx) { os_free(ctx); } void * aes_decrypt_init(const u8 *key, size_t len) { Aes *aes; if (TEST_FAIL()) return NULL; aes = os_malloc(sizeof(Aes)); if (!aes) return NULL; if (wc_AesSetKey(aes, key, len, NULL, AES_DECRYPTION) < 0) { os_free(aes); return NULL; } return aes; } int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) { wc_AesDecryptDirect(ctx, plain, crypt); return 0; } void aes_decrypt_deinit(void *ctx) { os_free(ctx); } int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) { Aes aes; int ret; if (TEST_FAIL()) return -1; ret = wc_AesSetKey(&aes, key, 16, iv, AES_ENCRYPTION); if (ret != 0) return -1; ret = wc_AesCbcEncrypt(&aes, data, data, data_len); if (ret != 0) return -1; return 0; } int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) { Aes aes; int ret; if (TEST_FAIL()) return -1; ret = wc_AesSetKey(&aes, key, 16, iv, AES_DECRYPTION); if (ret != 0) return -1; ret = wc_AesCbcDecrypt(&aes, data, data, data_len); if (ret != 0) return -1; return 0; } int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher) { int ret; ret = wc_AesKeyWrap(kek, kek_len, plain, n * 8, cipher, (n + 1) * 8, NULL); return ret != (n + 1) * 8 ? -1 : 0; } int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher, u8 *plain) { int ret; ret = wc_AesKeyUnWrap(kek, kek_len, cipher, (n + 1) * 8, plain, n * 8, NULL); return ret != n * 8 ? -1 : 0; } #ifndef CONFIG_NO_RC4 int rc4_skip(const u8 *key, size_t keylen, size_t skip, u8 *data, size_t data_len) { #ifndef NO_RC4 Arc4 arc4; unsigned char skip_buf[16]; wc_Arc4SetKey(&arc4, key, keylen); while (skip >= sizeof(skip_buf)) { size_t len = skip; if (len > sizeof(skip_buf)) len = sizeof(skip_buf); wc_Arc4Process(&arc4, skip_buf, skip_buf, len); skip -= len; } wc_Arc4Process(&arc4, data, data, data_len); return 0; #else /* NO_RC4 */ return -1; #endif /* NO_RC4 */ } #endif /* CONFIG_NO_RC4 */ #if defined(EAP_IKEV2) || defined(EAP_IKEV2_DYNAMIC) \ || defined(EAP_SERVER_IKEV2) union wolfssl_cipher { Aes aes; Des3 des3; Arc4 arc4; }; struct crypto_cipher { enum crypto_cipher_alg alg; union wolfssl_cipher enc; union wolfssl_cipher dec; }; struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, const u8 *iv, const u8 *key, size_t key_len) { struct crypto_cipher *ctx; ctx = os_zalloc(sizeof(*ctx)); if (!ctx) return NULL; switch (alg) { #ifndef CONFIG_NO_RC4 #ifndef NO_RC4 case CRYPTO_CIPHER_ALG_RC4: wc_Arc4SetKey(&ctx->enc.arc4, key, key_len); wc_Arc4SetKey(&ctx->dec.arc4, key, key_len); break; #endif /* NO_RC4 */ #endif /* CONFIG_NO_RC4 */ #ifndef NO_AES case CRYPTO_CIPHER_ALG_AES: switch (key_len) { case 16: case 24: case 32: break; default: os_free(ctx); return NULL; } if (wc_AesSetKey(&ctx->enc.aes, key, key_len, iv, AES_ENCRYPTION) || wc_AesSetKey(&ctx->dec.aes, key, key_len, iv, AES_DECRYPTION)) { os_free(ctx); return NULL; } break; #endif /* NO_AES */ #ifndef NO_DES3 case CRYPTO_CIPHER_ALG_3DES: if (key_len != DES3_KEYLEN || wc_Des3_SetKey(&ctx->enc.des3, key, iv, DES_ENCRYPTION) || wc_Des3_SetKey(&ctx->dec.des3, key, iv, DES_DECRYPTION)) { os_free(ctx); return NULL; } break; #endif /* NO_DES3 */ case CRYPTO_CIPHER_ALG_RC2: case CRYPTO_CIPHER_ALG_DES: default: os_free(ctx); return NULL; } ctx->alg = alg; return ctx; } int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, u8 *crypt, size_t len) { switch (ctx->alg) { #ifndef CONFIG_NO_RC4 #ifndef NO_RC4 case CRYPTO_CIPHER_ALG_RC4: wc_Arc4Process(&ctx->enc.arc4, crypt, plain, len); return 0; #endif /* NO_RC4 */ #endif /* CONFIG_NO_RC4 */ #ifndef NO_AES case CRYPTO_CIPHER_ALG_AES: if (wc_AesCbcEncrypt(&ctx->enc.aes, crypt, plain, len) != 0) return -1; return 0; #endif /* NO_AES */ #ifndef NO_DES3 case CRYPTO_CIPHER_ALG_3DES: if (wc_Des3_CbcEncrypt(&ctx->enc.des3, crypt, plain, len) != 0) return -1; return 0; #endif /* NO_DES3 */ default: return -1; } return -1; } int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, u8 *plain, size_t len) { switch (ctx->alg) { #ifndef CONFIG_NO_RC4 #ifndef NO_RC4 case CRYPTO_CIPHER_ALG_RC4: wc_Arc4Process(&ctx->dec.arc4, plain, crypt, len); return 0; #endif /* NO_RC4 */ #endif /* CONFIG_NO_RC4 */ #ifndef NO_AES case CRYPTO_CIPHER_ALG_AES: if (wc_AesCbcDecrypt(&ctx->dec.aes, plain, crypt, len) != 0) return -1; return 0; #endif /* NO_AES */ #ifndef NO_DES3 case CRYPTO_CIPHER_ALG_3DES: if (wc_Des3_CbcDecrypt(&ctx->dec.des3, plain, crypt, len) != 0) return -1; return 0; #endif /* NO_DES3 */ default: return -1; } return -1; } void crypto_cipher_deinit(struct crypto_cipher *ctx) { os_free(ctx); } #endif #ifdef CONFIG_WPS_NFC static const unsigned char RFC3526_PRIME_1536[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const unsigned char RFC3526_GENERATOR_1536[] = { 0x02 }; #define RFC3526_LEN sizeof(RFC3526_PRIME_1536) void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) { WC_RNG rng; DhKey *ret = NULL; DhKey *dh = NULL; struct wpabuf *privkey = NULL; struct wpabuf *pubkey = NULL; word32 priv_sz, pub_sz; *priv = NULL; wpabuf_free(*publ); *publ = NULL; dh = os_malloc(sizeof(DhKey)); if (!dh) return NULL; wc_InitDhKey(dh); if (wc_InitRng(&rng) != 0) { os_free(dh); return NULL; } privkey = wpabuf_alloc(RFC3526_LEN); pubkey = wpabuf_alloc(RFC3526_LEN); if (!privkey || !pubkey) goto done; if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536)) != 0) goto done; if (wc_DhGenerateKeyPair(dh, &rng, wpabuf_mhead(privkey), &priv_sz, wpabuf_mhead(pubkey), &pub_sz) != 0) goto done; wpabuf_put(privkey, priv_sz); wpabuf_put(pubkey, pub_sz); ret = dh; *priv = privkey; *publ = pubkey; dh = NULL; privkey = NULL; pubkey = NULL; done: wpabuf_clear_free(pubkey); wpabuf_clear_free(privkey); if (dh) { wc_FreeDhKey(dh); os_free(dh); } wc_FreeRng(&rng); return ret; } void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) { DhKey *ret = NULL; DhKey *dh; byte *secret; word32 secret_sz; dh = os_malloc(sizeof(DhKey)); if (!dh) return NULL; wc_InitDhKey(dh); secret = os_malloc(RFC3526_LEN); if (!secret) goto done; if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536)) != 0) goto done; if (wc_DhAgree(dh, secret, &secret_sz, wpabuf_head(priv), wpabuf_len(priv), RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536)) != 0) goto done; if (secret_sz != wpabuf_len(publ) || os_memcmp(secret, wpabuf_head(publ), secret_sz) != 0) goto done; ret = dh; dh = NULL; done: if (dh) { wc_FreeDhKey(dh); os_free(dh); } os_free(secret); return ret; } struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, const struct wpabuf *own_private) { struct wpabuf *ret = NULL; struct wpabuf *secret; word32 secret_sz; secret = wpabuf_alloc(RFC3526_LEN); if (!secret) goto done; if (wc_DhAgree(ctx, wpabuf_mhead(secret), &secret_sz, wpabuf_head(own_private), wpabuf_len(own_private), wpabuf_head(peer_public), wpabuf_len(peer_public)) != 0) goto done; wpabuf_put(secret, secret_sz); ret = secret; secret = NULL; done: wpabuf_clear_free(secret); return ret; } void dh5_free(void *ctx) { if (!ctx) return; wc_FreeDhKey(ctx); os_free(ctx); } #endif /* CONFIG_WPS_NFC */ int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, u8 *pubkey) { int ret = -1; WC_RNG rng; DhKey *dh = NULL; word32 priv_sz, pub_sz; if (TEST_FAIL()) return -1; dh = os_malloc(sizeof(DhKey)); if (!dh) return -1; wc_InitDhKey(dh); if (wc_InitRng(&rng) != 0) { os_free(dh); return -1; } if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0) goto done; if (wc_DhGenerateKeyPair(dh, &rng, privkey, &priv_sz, pubkey, &pub_sz) != 0) goto done; if (priv_sz < prime_len) { size_t pad_sz = prime_len - priv_sz; os_memmove(privkey + pad_sz, privkey, priv_sz); os_memset(privkey, 0, pad_sz); } if (pub_sz < prime_len) { size_t pad_sz = prime_len - pub_sz; os_memmove(pubkey + pad_sz, pubkey, pub_sz); os_memset(pubkey, 0, pad_sz); } ret = 0; done: wc_FreeDhKey(dh); os_free(dh); wc_FreeRng(&rng); return ret; } int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, const u8 *privkey, size_t privkey_len, const u8 *pubkey, size_t pubkey_len, u8 *secret, size_t *len) { int ret = -1; DhKey *dh; word32 secret_sz; dh = os_malloc(sizeof(DhKey)); if (!dh) return -1; wc_InitDhKey(dh); if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0) goto done; if (wc_DhAgree(dh, secret, &secret_sz, privkey, privkey_len, pubkey, pubkey_len) != 0) goto done; *len = secret_sz; ret = 0; done: wc_FreeDhKey(dh); os_free(dh); return ret; } #ifdef CONFIG_FIPS int crypto_get_random(void *buf, size_t len) { int ret = 0; WC_RNG rng; if (wc_InitRng(&rng) != 0) return -1; if (wc_RNG_GenerateBlock(&rng, buf, len) != 0) ret = -1; wc_FreeRng(&rng); return ret; } #endif /* CONFIG_FIPS */ #if defined(EAP_PWD) || defined(EAP_SERVER_PWD) struct crypto_hash { Hmac hmac; int size; }; struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, size_t key_len) { struct crypto_hash *ret = NULL; struct crypto_hash *hash; int type; hash = os_malloc(sizeof(*hash)); if (!hash) goto done; switch (alg) { #ifndef NO_MD5 case CRYPTO_HASH_ALG_HMAC_MD5: hash->size = 16; type = WC_MD5; break; #endif /* NO_MD5 */ #ifndef NO_SHA case CRYPTO_HASH_ALG_HMAC_SHA1: type = WC_SHA; hash->size = 20; break; #endif /* NO_SHA */ #ifdef CONFIG_SHA256 #ifndef NO_SHA256 case CRYPTO_HASH_ALG_HMAC_SHA256: type = WC_SHA256; hash->size = 32; break; #endif /* NO_SHA256 */ #endif /* CONFIG_SHA256 */ default: goto done; } if (wc_HmacSetKey(&hash->hmac, type, key, key_len) != 0) goto done; ret = hash; hash = NULL; done: os_free(hash); return ret; } void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) { if (!ctx) return; wc_HmacUpdate(&ctx->hmac, data, len); } int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) { int ret = 0; if (!ctx) return -2; if (!mac || !len) goto done; if (wc_HmacFinal(&ctx->hmac, mac) != 0) { ret = -1; goto done; } *len = ctx->size; ret = 0; done: bin_clear_free(ctx, sizeof(*ctx)); return ret; } #endif int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { Cmac cmac; size_t i; word32 sz; if (TEST_FAIL()) return -1; if (wc_InitCmac(&cmac, key, key_len, WC_CMAC_AES, NULL) != 0) return -1; for (i = 0; i < num_elem; i++) if (wc_CmacUpdate(&cmac, addr[i], len[i]) != 0) return -1; sz = AES_BLOCK_SIZE; if (wc_CmacFinal(&cmac, mac, &sz) != 0 || sz != AES_BLOCK_SIZE) return -1; return 0; } int omac1_aes_128_vector(const u8 *key, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return omac1_aes_vector(key, 16, num_elem, addr, len, mac); } int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) { return omac1_aes_128_vector(key, 1, &data, &data_len, mac); } int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac) { return omac1_aes_vector(key, 32, 1, &data, &data_len, mac); } struct crypto_bignum * crypto_bignum_init(void) { mp_int *a; if (TEST_FAIL()) return NULL; a = os_malloc(sizeof(*a)); if (!a || mp_init(a) != MP_OKAY) { os_free(a); a = NULL; } return (struct crypto_bignum *) a; } struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) { mp_int *a; if (TEST_FAIL()) return NULL; a = (mp_int *) crypto_bignum_init(); if (!a) return NULL; if (mp_read_unsigned_bin(a, buf, len) != MP_OKAY) { os_free(a); a = NULL; } return (struct crypto_bignum *) a; } void crypto_bignum_deinit(struct crypto_bignum *n, int clear) { if (!n) return; if (clear) mp_forcezero((mp_int *) n); mp_clear((mp_int *) n); os_free((mp_int *) n); } int crypto_bignum_to_bin(const struct crypto_bignum *a, u8 *buf, size_t buflen, size_t padlen) { int num_bytes, offset; if (TEST_FAIL()) return -1; if (padlen > buflen) return -1; num_bytes = (mp_count_bits((mp_int *) a) + 7) / 8; if ((size_t) num_bytes > buflen) return -1; if (padlen > (size_t) num_bytes) offset = padlen - num_bytes; else offset = 0; os_memset(buf, 0, offset); mp_to_unsigned_bin((mp_int *) a, buf + offset); return num_bytes + offset; } int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m) { int ret = 0; WC_RNG rng; if (wc_InitRng(&rng) != 0) return -1; if (mp_rand_prime((mp_int *) r, (mp_count_bits((mp_int *) m) + 7) / 8 * 2, &rng, NULL) != 0) ret = -1; if (ret == 0 && mp_mod((mp_int *) r, (mp_int *) m, (mp_int *) r) != 0) ret = -1; wc_FreeRng(&rng); return ret; } int crypto_bignum_add(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *r) { return mp_add((mp_int *) a, (mp_int *) b, (mp_int *) r) == MP_OKAY ? 0 : -1; } int crypto_bignum_mod(const struct crypto_bignum *a, const struct crypto_bignum *m, struct crypto_bignum *r) { return mp_mod((mp_int *) a, (mp_int *) m, (mp_int *) r) == MP_OKAY ? 0 : -1; } int crypto_bignum_exptmod(const struct crypto_bignum *b, const struct crypto_bignum *e, const struct crypto_bignum *m, struct crypto_bignum *r) { if (TEST_FAIL()) return -1; return mp_exptmod((mp_int *) b, (mp_int *) e, (mp_int *) m, (mp_int *) r) == MP_OKAY ? 0 : -1; } int crypto_bignum_inverse(const struct crypto_bignum *a, const struct crypto_bignum *m, struct crypto_bignum *r) { if (TEST_FAIL()) return -1; return mp_invmod((mp_int *) a, (mp_int *) m, (mp_int *) r) == MP_OKAY ? 0 : -1; } int crypto_bignum_sub(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *r) { if (TEST_FAIL()) return -1; return mp_add((mp_int *) a, (mp_int *) b, (mp_int *) r) == MP_OKAY ? 0 : -1; } int crypto_bignum_div(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *d) { if (TEST_FAIL()) return -1; return mp_div((mp_int *) a, (mp_int *) b, (mp_int *) d, NULL) == MP_OKAY ? 0 : -1; } int crypto_bignum_mulmod(const struct crypto_bignum *a, const struct crypto_bignum *b, const struct crypto_bignum *m, struct crypto_bignum *d) { if (TEST_FAIL()) return -1; return mp_mulmod((mp_int *) a, (mp_int *) b, (mp_int *) m, (mp_int *) d) == MP_OKAY ? 0 : -1; } int crypto_bignum_rshift(const struct crypto_bignum *a, int n, struct crypto_bignum *r) { if (mp_copy((mp_int *) a, (mp_int *) r) != MP_OKAY) return -1; mp_rshd((mp_int *) r, n); return 0; } int crypto_bignum_cmp(const struct crypto_bignum *a, const struct crypto_bignum *b) { return mp_cmp((mp_int *) a, (mp_int *) b); } int crypto_bignum_bits(const struct crypto_bignum *a) { return mp_count_bits((mp_int *) a); } int crypto_bignum_is_zero(const struct crypto_bignum *a) { return mp_iszero((mp_int *) a); } int crypto_bignum_is_one(const struct crypto_bignum *a) { return mp_isone((const mp_int *) a); } int crypto_bignum_is_odd(const struct crypto_bignum *a) { return mp_isodd((mp_int *) a); } int crypto_bignum_legendre(const struct crypto_bignum *a, const struct crypto_bignum *p) { mp_int t; int ret; int res = -2; if (TEST_FAIL()) return -2; if (mp_init(&t) != MP_OKAY) return -2; /* t = (p-1) / 2 */ ret = mp_sub_d((mp_int *) p, 1, &t); if (ret == MP_OKAY) mp_rshb(&t, 1); if (ret == MP_OKAY) ret = mp_exptmod((mp_int *) a, &t, (mp_int *) p, &t); if (ret == MP_OKAY) { if (mp_isone(&t)) res = 1; else if (mp_iszero(&t)) res = 0; else res = -1; } mp_clear(&t); return res; } #ifdef CONFIG_ECC int ecc_map(ecc_point *, mp_int *, mp_digit); int ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, mp_int *a, mp_int *modulus, mp_digit mp); struct crypto_ec { ecc_key key; mp_int a; mp_int prime; mp_int order; mp_digit mont_b; mp_int b; }; struct crypto_ec * crypto_ec_init(int group) { int built = 0; struct crypto_ec *e; int curve_id; /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ switch (group) { case 19: curve_id = ECC_SECP256R1; break; case 20: curve_id = ECC_SECP384R1; break; case 21: curve_id = ECC_SECP521R1; break; case 25: curve_id = ECC_SECP192R1; break; case 26: curve_id = ECC_SECP224R1; break; #ifdef HAVE_ECC_BRAINPOOL case 27: curve_id = ECC_BRAINPOOLP224R1; break; case 28: curve_id = ECC_BRAINPOOLP256R1; break; case 29: curve_id = ECC_BRAINPOOLP384R1; break; case 30: curve_id = ECC_BRAINPOOLP512R1; break; #endif /* HAVE_ECC_BRAINPOOL */ default: return NULL; } e = os_zalloc(sizeof(*e)); if (!e) return NULL; if (wc_ecc_init(&e->key) != 0 || wc_ecc_set_curve(&e->key, 0, curve_id) != 0 || mp_init(&e->a) != MP_OKAY || mp_init(&e->prime) != MP_OKAY || mp_init(&e->order) != MP_OKAY || mp_init(&e->b) != MP_OKAY || mp_read_radix(&e->a, e->key.dp->Af, 16) != MP_OKAY || mp_read_radix(&e->b, e->key.dp->Bf, 16) != MP_OKAY || mp_read_radix(&e->prime, e->key.dp->prime, 16) != MP_OKAY || mp_read_radix(&e->order, e->key.dp->order, 16) != MP_OKAY || mp_montgomery_setup(&e->prime, &e->mont_b) != MP_OKAY) goto done; built = 1; done: if (!built) { crypto_ec_deinit(e); e = NULL; } return e; } void crypto_ec_deinit(struct crypto_ec* e) { if (!e) return; mp_clear(&e->b); mp_clear(&e->order); mp_clear(&e->prime); mp_clear(&e->a); wc_ecc_free(&e->key); os_free(e); } int crypto_ec_cofactor(struct crypto_ec *e, struct crypto_bignum *cofactor) { if (!e || !cofactor) return -1; mp_set((mp_int *) cofactor, e->key.dp->cofactor); return 0; } struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) { if (TEST_FAIL()) return NULL; if (!e) return NULL; return (struct crypto_ec_point *) wc_ecc_new_point(); } size_t crypto_ec_prime_len(struct crypto_ec *e) { return (mp_count_bits(&e->prime) + 7) / 8; } size_t crypto_ec_prime_len_bits(struct crypto_ec *e) { return mp_count_bits(&e->prime); } size_t crypto_ec_order_len(struct crypto_ec *e) { return (mp_count_bits(&e->order) + 7) / 8; } const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) { return (const struct crypto_bignum *) &e->prime; } const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) { return (const struct crypto_bignum *) &e->order; } void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) { ecc_point *point = (ecc_point *) p; if (!p) return; if (clear) { mp_forcezero(point->x); mp_forcezero(point->y); mp_forcezero(point->z); } wc_ecc_del_point(point); } int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p, struct crypto_bignum *x) { return mp_copy(((ecc_point *) p)->x, (mp_int *) x) == MP_OKAY ? 0 : -1; } int crypto_ec_point_to_bin(struct crypto_ec *e, const struct crypto_ec_point *point, u8 *x, u8 *y) { ecc_point *p = (ecc_point *) point; if (TEST_FAIL()) return -1; if (!mp_isone(p->z)) { if (ecc_map(p, &e->prime, e->mont_b) != MP_OKAY) return -1; } if (x) { if (crypto_bignum_to_bin((struct crypto_bignum *)p->x, x, e->key.dp->size, e->key.dp->size) <= 0) return -1; } if (y) { if (crypto_bignum_to_bin((struct crypto_bignum *) p->y, y, e->key.dp->size, e->key.dp->size) <= 0) return -1; } return 0; } struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, const u8 *val) { ecc_point *point = NULL; int loaded = 0; if (TEST_FAIL()) return NULL; point = wc_ecc_new_point(); if (!point) goto done; if (mp_read_unsigned_bin(point->x, val, e->key.dp->size) != MP_OKAY) goto done; val += e->key.dp->size; if (mp_read_unsigned_bin(point->y, val, e->key.dp->size) != MP_OKAY) goto done; mp_set(point->z, 1); loaded = 1; done: if (!loaded) { wc_ecc_del_point(point); point = NULL; } return (struct crypto_ec_point *) point; } int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, const struct crypto_ec_point *b, struct crypto_ec_point *c) { mp_int mu; ecc_point *ta = NULL, *tb = NULL; ecc_point *pa = (ecc_point *) a, *pb = (ecc_point *) b; mp_int *modulus = &e->prime; int ret; if (TEST_FAIL()) return -1; ret = mp_init(&mu); if (ret != MP_OKAY) return -1; ret = mp_montgomery_calc_normalization(&mu, modulus); if (ret != MP_OKAY) { mp_clear(&mu); return -1; } if (!mp_isone(&mu)) { ta = wc_ecc_new_point(); if (!ta) { mp_clear(&mu); return -1; } tb = wc_ecc_new_point(); if (!tb) { wc_ecc_del_point(ta); mp_clear(&mu); return -1; } if (mp_mulmod(pa->x, &mu, modulus, ta->x) != MP_OKAY || mp_mulmod(pa->y, &mu, modulus, ta->y) != MP_OKAY || mp_mulmod(pa->z, &mu, modulus, ta->z) != MP_OKAY || mp_mulmod(pb->x, &mu, modulus, tb->x) != MP_OKAY || mp_mulmod(pb->y, &mu, modulus, tb->y) != MP_OKAY || mp_mulmod(pb->z, &mu, modulus, tb->z) != MP_OKAY) { ret = -1; goto end; } pa = ta; pb = tb; } ret = ecc_projective_add_point(pa, pb, (ecc_point *) c, &e->a, &e->prime, e->mont_b); if (ret != 0) { ret = -1; goto end; } if (ecc_map((ecc_point *) c, &e->prime, e->mont_b) != MP_OKAY) ret = -1; else ret = 0; end: wc_ecc_del_point(tb); wc_ecc_del_point(ta); mp_clear(&mu); return ret; } int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, const struct crypto_bignum *b, struct crypto_ec_point *res) { int ret; if (TEST_FAIL()) return -1; ret = wc_ecc_mulmod((mp_int *) b, (ecc_point *) p, (ecc_point *) res, &e->a, &e->prime, 1); return ret == 0 ? 0 : -1; } int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) { ecc_point *point = (ecc_point *) p; if (TEST_FAIL()) return -1; if (mp_sub(&e->prime, point->y, point->y) != MP_OKAY) return -1; return 0; } int crypto_ec_point_solve_y_coord(struct crypto_ec *e, struct crypto_ec_point *p, const struct crypto_bignum *x, int y_bit) { byte buf[1 + 2 * MAX_ECC_BYTES]; int ret; int prime_len = crypto_ec_prime_len(e); if (TEST_FAIL()) return -1; buf[0] = y_bit ? ECC_POINT_COMP_ODD : ECC_POINT_COMP_EVEN; ret = crypto_bignum_to_bin(x, buf + 1, prime_len, prime_len); if (ret <= 0) return -1; ret = wc_ecc_import_point_der(buf, 1 + 2 * ret, e->key.idx, (ecc_point *) p); if (ret != 0) return -1; return 0; } struct crypto_bignum * crypto_ec_point_compute_y_sqr(struct crypto_ec *e, const struct crypto_bignum *x) { mp_int *y2 = NULL; mp_int t; int calced = 0; if (TEST_FAIL()) return NULL; if (mp_init(&t) != MP_OKAY) return NULL; y2 = (mp_int *) crypto_bignum_init(); if (!y2) goto done; if (mp_sqrmod((mp_int *) x, &e->prime, y2) != 0 || mp_mulmod((mp_int *) x, &t, &e->prime, y2) != 0 || mp_mulmod((mp_int *) x, &e->a, &e->prime, &t) != 0 || mp_addmod(y2, &t, &e->prime, y2) != 0 || mp_addmod(y2, &e->b, &e->prime, y2) != 0) goto done; calced = 1; done: if (!calced) { if (y2) { mp_clear(y2); os_free(y2); } mp_clear(&t); } return (struct crypto_bignum *) y2; } int crypto_ec_point_is_at_infinity(struct crypto_ec *e, const struct crypto_ec_point *p) { return wc_ecc_point_is_at_infinity((ecc_point *) p); } int crypto_ec_point_is_on_curve(struct crypto_ec *e, const struct crypto_ec_point *p) { return wc_ecc_is_point((ecc_point *) p, &e->a, &e->b, &e->prime) == MP_OKAY; } int crypto_ec_point_cmp(const struct crypto_ec *e, const struct crypto_ec_point *a, const struct crypto_ec_point *b) { return wc_ecc_cmp_point((ecc_point *) a, (ecc_point *) b); } struct crypto_ecdh { struct crypto_ec *ec; }; struct crypto_ecdh * crypto_ecdh_init(int group) { struct crypto_ecdh *ecdh = NULL; WC_RNG rng; int ret; if (wc_InitRng(&rng) != 0) goto fail; ecdh = os_zalloc(sizeof(*ecdh)); if (!ecdh) goto fail; ecdh->ec = crypto_ec_init(group); if (!ecdh->ec) goto fail; ret = wc_ecc_make_key_ex(&rng, ecdh->ec->key.dp->size, &ecdh->ec->key, ecdh->ec->key.dp->id); if (ret < 0) goto fail; done: wc_FreeRng(&rng); return ecdh; fail: crypto_ecdh_deinit(ecdh); ecdh = NULL; goto done; } void crypto_ecdh_deinit(struct crypto_ecdh *ecdh) { if (ecdh) { crypto_ec_deinit(ecdh->ec); os_free(ecdh); } } struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y) { struct wpabuf *buf = NULL; int ret; int len = ecdh->ec->key.dp->size; buf = wpabuf_alloc(inc_y ? 2 * len : len); if (!buf) goto fail; ret = crypto_bignum_to_bin((struct crypto_bignum *) ecdh->ec->key.pubkey.x, wpabuf_put(buf, len), len, len); if (ret < 0) goto fail; if (inc_y) { ret = crypto_bignum_to_bin((struct crypto_bignum *) ecdh->ec->key.pubkey.y, wpabuf_put(buf, len), len, len); if (ret < 0) goto fail; } done: return buf; fail: wpabuf_free(buf); buf = NULL; goto done; } struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y, const u8 *key, size_t len) { int ret; struct wpabuf *pubkey = NULL; struct wpabuf *secret = NULL; word32 key_len = ecdh->ec->key.dp->size; ecc_point *point = NULL; size_t need_key_len = inc_y ? 2 * key_len : key_len; if (len < need_key_len) goto fail; pubkey = wpabuf_alloc(1 + 2 * key_len); if (!pubkey) goto fail; wpabuf_put_u8(pubkey, inc_y ? ECC_POINT_UNCOMP : ECC_POINT_COMP_EVEN); wpabuf_put_data(pubkey, key, need_key_len); point = wc_ecc_new_point(); if (!point) goto fail; ret = wc_ecc_import_point_der(wpabuf_mhead(pubkey), 1 + 2 * key_len, ecdh->ec->key.dp->id, point); if (ret != MP_OKAY) goto fail; secret = wpabuf_alloc(key_len); if (!secret) goto fail; ret = wc_ecc_shared_secret_ex(&ecdh->ec->key, point, wpabuf_put(secret, key_len), &key_len); if (ret != MP_OKAY) goto fail; done: wc_ecc_del_point(point); wpabuf_free(pubkey); return secret; fail: wpabuf_free(secret); secret = NULL; goto done; } #endif /* CONFIG_ECC */