/* * IEEE 802.11 RSN / WPA Authenticator * Copyright (c) 2004-2018, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include "utils/common.h" #include "utils/eloop.h" #include "utils/state_machine.h" #include "utils/bitfield.h" #include "common/ieee802_11_defs.h" #include "common/ocv.h" #include "crypto/aes.h" #include "crypto/aes_wrap.h" #include "crypto/aes_siv.h" #include "crypto/crypto.h" #include "crypto/sha1.h" #include "crypto/sha256.h" #include "crypto/sha384.h" #include "crypto/random.h" #include "eapol_auth/eapol_auth_sm.h" #include "drivers/driver.h" #include "ap_config.h" #include "ieee802_11.h" #include "wpa_auth.h" #include "pmksa_cache_auth.h" #include "wpa_auth_i.h" #include "wpa_auth_ie.h" #define STATE_MACHINE_DATA struct wpa_state_machine #define STATE_MACHINE_DEBUG_PREFIX "WPA" #define STATE_MACHINE_ADDR sm->addr static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx); static int wpa_sm_step(struct wpa_state_machine *sm); static int wpa_verify_key_mic(int akmp, size_t pmk_len, struct wpa_ptk *PTK, u8 *data, size_t data_len); #ifdef CONFIG_FILS static int wpa_aead_decrypt(struct wpa_state_machine *sm, struct wpa_ptk *ptk, u8 *buf, size_t buf_len, u16 *_key_data_len); static struct wpabuf * fils_prepare_plainbuf(struct wpa_state_machine *sm, const struct wpabuf *hlp); #endif /* CONFIG_FILS */ static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx); static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static void wpa_request_new_ptk(struct wpa_state_machine *sm); static int wpa_gtk_update(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static int wpa_group_config_group_keys(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static int wpa_derive_ptk(struct wpa_state_machine *sm, const u8 *snonce, const u8 *pmk, unsigned int pmk_len, struct wpa_ptk *ptk); static void wpa_group_free(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static void wpa_group_get(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static void wpa_group_put(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos); static const u32 eapol_key_timeout_first = 100; /* ms */ static const u32 eapol_key_timeout_subseq = 1000; /* ms */ static const u32 eapol_key_timeout_first_group = 500; /* ms */ static const u32 eapol_key_timeout_no_retrans = 4000; /* ms */ /* TODO: make these configurable */ static const int dot11RSNAConfigPMKLifetime = 43200; static const int dot11RSNAConfigPMKReauthThreshold = 70; static const int dot11RSNAConfigSATimeout = 60; static inline int wpa_auth_mic_failure_report( struct wpa_authenticator *wpa_auth, const u8 *addr) { if (wpa_auth->cb->mic_failure_report) return wpa_auth->cb->mic_failure_report(wpa_auth->cb_ctx, addr); return 0; } static inline void wpa_auth_psk_failure_report( struct wpa_authenticator *wpa_auth, const u8 *addr) { if (wpa_auth->cb->psk_failure_report) wpa_auth->cb->psk_failure_report(wpa_auth->cb_ctx, addr); } static inline void wpa_auth_set_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr, wpa_eapol_variable var, int value) { if (wpa_auth->cb->set_eapol) wpa_auth->cb->set_eapol(wpa_auth->cb_ctx, addr, var, value); } static inline int wpa_auth_get_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr, wpa_eapol_variable var) { if (wpa_auth->cb->get_eapol == NULL) return -1; return wpa_auth->cb->get_eapol(wpa_auth->cb_ctx, addr, var); } static inline const u8 * wpa_auth_get_psk(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *p2p_dev_addr, const u8 *prev_psk, size_t *psk_len) { if (wpa_auth->cb->get_psk == NULL) return NULL; return wpa_auth->cb->get_psk(wpa_auth->cb_ctx, addr, p2p_dev_addr, prev_psk, psk_len); } static inline int wpa_auth_get_msk(struct wpa_authenticator *wpa_auth, const u8 *addr, u8 *msk, size_t *len) { if (wpa_auth->cb->get_msk == NULL) return -1; return wpa_auth->cb->get_msk(wpa_auth->cb_ctx, addr, msk, len); } static inline int wpa_auth_set_key(struct wpa_authenticator *wpa_auth, int vlan_id, enum wpa_alg alg, const u8 *addr, int idx, u8 *key, size_t key_len) { if (wpa_auth->cb->set_key == NULL) return -1; return wpa_auth->cb->set_key(wpa_auth->cb_ctx, vlan_id, alg, addr, idx, key, key_len); } static inline int wpa_auth_get_seqnum(struct wpa_authenticator *wpa_auth, const u8 *addr, int idx, u8 *seq) { if (wpa_auth->cb->get_seqnum == NULL) return -1; return wpa_auth->cb->get_seqnum(wpa_auth->cb_ctx, addr, idx, seq); } static inline int wpa_auth_send_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *data, size_t data_len, int encrypt) { if (wpa_auth->cb->send_eapol == NULL) return -1; return wpa_auth->cb->send_eapol(wpa_auth->cb_ctx, addr, data, data_len, encrypt); } #ifdef CONFIG_MESH static inline int wpa_auth_start_ampe(struct wpa_authenticator *wpa_auth, const u8 *addr) { if (wpa_auth->cb->start_ampe == NULL) return -1; return wpa_auth->cb->start_ampe(wpa_auth->cb_ctx, addr); } #endif /* CONFIG_MESH */ int wpa_auth_for_each_sta(struct wpa_authenticator *wpa_auth, int (*cb)(struct wpa_state_machine *sm, void *ctx), void *cb_ctx) { if (wpa_auth->cb->for_each_sta == NULL) return 0; return wpa_auth->cb->for_each_sta(wpa_auth->cb_ctx, cb, cb_ctx); } int wpa_auth_for_each_auth(struct wpa_authenticator *wpa_auth, int (*cb)(struct wpa_authenticator *a, void *ctx), void *cb_ctx) { if (wpa_auth->cb->for_each_auth == NULL) return 0; return wpa_auth->cb->for_each_auth(wpa_auth->cb_ctx, cb, cb_ctx); } void wpa_auth_logger(struct wpa_authenticator *wpa_auth, const u8 *addr, logger_level level, const char *txt) { if (wpa_auth->cb->logger == NULL) return; wpa_auth->cb->logger(wpa_auth->cb_ctx, addr, level, txt); } void wpa_auth_vlogger(struct wpa_authenticator *wpa_auth, const u8 *addr, logger_level level, const char *fmt, ...) { char *format; int maxlen; va_list ap; if (wpa_auth->cb->logger == NULL) return; maxlen = os_strlen(fmt) + 100; format = os_malloc(maxlen); if (!format) return; va_start(ap, fmt); vsnprintf(format, maxlen, fmt, ap); va_end(ap); wpa_auth_logger(wpa_auth, addr, level, format); os_free(format); } static void wpa_sta_disconnect(struct wpa_authenticator *wpa_auth, const u8 *addr, u16 reason) { if (wpa_auth->cb->disconnect == NULL) return; wpa_printf(MSG_DEBUG, "wpa_sta_disconnect STA " MACSTR " (reason %u)", MAC2STR(addr), reason); wpa_auth->cb->disconnect(wpa_auth->cb_ctx, addr, reason); } #ifdef CONFIG_OCV static int wpa_channel_info(struct wpa_authenticator *wpa_auth, struct wpa_channel_info *ci) { if (!wpa_auth->cb->channel_info) return -1; return wpa_auth->cb->channel_info(wpa_auth->cb_ctx, ci); } #endif /* CONFIG_OCV */ static void wpa_rekey_gmk(void *eloop_ctx, void *timeout_ctx) { struct wpa_authenticator *wpa_auth = eloop_ctx; if (random_get_bytes(wpa_auth->group->GMK, WPA_GMK_LEN)) { wpa_printf(MSG_ERROR, "Failed to get random data for WPA " "initialization."); } else { wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "GMK rekeyd"); wpa_hexdump_key(MSG_DEBUG, "GMK", wpa_auth->group->GMK, WPA_GMK_LEN); } if (wpa_auth->conf.wpa_gmk_rekey) { eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0, wpa_rekey_gmk, wpa_auth, NULL); } } static void wpa_rekey_gtk(void *eloop_ctx, void *timeout_ctx) { struct wpa_authenticator *wpa_auth = eloop_ctx; struct wpa_group *group, *next; wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "rekeying GTK"); group = wpa_auth->group; while (group) { wpa_group_get(wpa_auth, group); group->GTKReKey = TRUE; do { group->changed = FALSE; wpa_group_sm_step(wpa_auth, group); } while (group->changed); next = group->next; wpa_group_put(wpa_auth, group); group = next; } if (wpa_auth->conf.wpa_group_rekey) { eloop_register_timeout(wpa_auth->conf.wpa_group_rekey, 0, wpa_rekey_gtk, wpa_auth, NULL); } } static void wpa_rekey_ptk(void *eloop_ctx, void *timeout_ctx) { struct wpa_authenticator *wpa_auth = eloop_ctx; struct wpa_state_machine *sm = timeout_ctx; wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "rekeying PTK"); wpa_request_new_ptk(sm); wpa_sm_step(sm); } static int wpa_auth_pmksa_clear_cb(struct wpa_state_machine *sm, void *ctx) { if (sm->pmksa == ctx) sm->pmksa = NULL; return 0; } static void wpa_auth_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry, void *ctx) { struct wpa_authenticator *wpa_auth = ctx; wpa_auth_for_each_sta(wpa_auth, wpa_auth_pmksa_clear_cb, entry); } static int wpa_group_init_gmk_and_counter(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { u8 buf[ETH_ALEN + 8 + sizeof(unsigned long)]; u8 rkey[32]; unsigned long ptr; if (random_get_bytes(group->GMK, WPA_GMK_LEN) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "GMK", group->GMK, WPA_GMK_LEN); /* * Counter = PRF-256(Random number, "Init Counter", * Local MAC Address || Time) */ os_memcpy(buf, wpa_auth->addr, ETH_ALEN); wpa_get_ntp_timestamp(buf + ETH_ALEN); ptr = (unsigned long) group; os_memcpy(buf + ETH_ALEN + 8, &ptr, sizeof(ptr)); if (random_get_bytes(rkey, sizeof(rkey)) < 0) return -1; if (sha1_prf(rkey, sizeof(rkey), "Init Counter", buf, sizeof(buf), group->Counter, WPA_NONCE_LEN) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "Key Counter", group->Counter, WPA_NONCE_LEN); return 0; } static struct wpa_group * wpa_group_init(struct wpa_authenticator *wpa_auth, int vlan_id, int delay_init) { struct wpa_group *group; group = os_zalloc(sizeof(struct wpa_group)); if (group == NULL) return NULL; group->GTKAuthenticator = TRUE; group->vlan_id = vlan_id; group->GTK_len = wpa_cipher_key_len(wpa_auth->conf.wpa_group); if (random_pool_ready() != 1) { wpa_printf(MSG_INFO, "WPA: Not enough entropy in random pool " "for secure operations - update keys later when " "the first station connects"); } /* * Set initial GMK/Counter value here. The actual values that will be * used in negotiations will be set once the first station tries to * connect. This allows more time for collecting additional randomness * on embedded devices. */ if (wpa_group_init_gmk_and_counter(wpa_auth, group) < 0) { wpa_printf(MSG_ERROR, "Failed to get random data for WPA " "initialization."); os_free(group); return NULL; } group->GInit = TRUE; if (delay_init) { wpa_printf(MSG_DEBUG, "WPA: Delay group state machine start " "until Beacon frames have been configured"); /* Initialization is completed in wpa_init_keys(). */ } else { wpa_group_sm_step(wpa_auth, group); group->GInit = FALSE; wpa_group_sm_step(wpa_auth, group); } return group; } /** * wpa_init - Initialize WPA authenticator * @addr: Authenticator address * @conf: Configuration for WPA authenticator * @cb: Callback functions for WPA authenticator * Returns: Pointer to WPA authenticator data or %NULL on failure */ struct wpa_authenticator * wpa_init(const u8 *addr, struct wpa_auth_config *conf, const struct wpa_auth_callbacks *cb, void *cb_ctx) { struct wpa_authenticator *wpa_auth; wpa_auth = os_zalloc(sizeof(struct wpa_authenticator)); if (wpa_auth == NULL) return NULL; os_memcpy(wpa_auth->addr, addr, ETH_ALEN); os_memcpy(&wpa_auth->conf, conf, sizeof(*conf)); wpa_auth->cb = cb; wpa_auth->cb_ctx = cb_ctx; if (wpa_auth_gen_wpa_ie(wpa_auth)) { wpa_printf(MSG_ERROR, "Could not generate WPA IE."); os_free(wpa_auth); return NULL; } wpa_auth->group = wpa_group_init(wpa_auth, 0, 1); if (wpa_auth->group == NULL) { os_free(wpa_auth->wpa_ie); os_free(wpa_auth); return NULL; } wpa_auth->pmksa = pmksa_cache_auth_init(wpa_auth_pmksa_free_cb, wpa_auth); if (wpa_auth->pmksa == NULL) { wpa_printf(MSG_ERROR, "PMKSA cache initialization failed."); os_free(wpa_auth->group); os_free(wpa_auth->wpa_ie); os_free(wpa_auth); return NULL; } #ifdef CONFIG_IEEE80211R_AP wpa_auth->ft_pmk_cache = wpa_ft_pmk_cache_init(); if (wpa_auth->ft_pmk_cache == NULL) { wpa_printf(MSG_ERROR, "FT PMK cache initialization failed."); os_free(wpa_auth->group); os_free(wpa_auth->wpa_ie); pmksa_cache_auth_deinit(wpa_auth->pmksa); os_free(wpa_auth); return NULL; } #endif /* CONFIG_IEEE80211R_AP */ if (wpa_auth->conf.wpa_gmk_rekey) { eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0, wpa_rekey_gmk, wpa_auth, NULL); } if (wpa_auth->conf.wpa_group_rekey) { eloop_register_timeout(wpa_auth->conf.wpa_group_rekey, 0, wpa_rekey_gtk, wpa_auth, NULL); } #ifdef CONFIG_P2P if (WPA_GET_BE32(conf->ip_addr_start)) { int count = WPA_GET_BE32(conf->ip_addr_end) - WPA_GET_BE32(conf->ip_addr_start) + 1; if (count > 1000) count = 1000; if (count > 0) wpa_auth->ip_pool = bitfield_alloc(count); } #endif /* CONFIG_P2P */ return wpa_auth; } int wpa_init_keys(struct wpa_authenticator *wpa_auth) { struct wpa_group *group = wpa_auth->group; wpa_printf(MSG_DEBUG, "WPA: Start group state machine to set initial " "keys"); wpa_group_sm_step(wpa_auth, group); group->GInit = FALSE; wpa_group_sm_step(wpa_auth, group); if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) return -1; return 0; } /** * wpa_deinit - Deinitialize WPA authenticator * @wpa_auth: Pointer to WPA authenticator data from wpa_init() */ void wpa_deinit(struct wpa_authenticator *wpa_auth) { struct wpa_group *group, *prev; eloop_cancel_timeout(wpa_rekey_gmk, wpa_auth, NULL); eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL); pmksa_cache_auth_deinit(wpa_auth->pmksa); #ifdef CONFIG_IEEE80211R_AP wpa_ft_pmk_cache_deinit(wpa_auth->ft_pmk_cache); wpa_auth->ft_pmk_cache = NULL; wpa_ft_deinit(wpa_auth); #endif /* CONFIG_IEEE80211R_AP */ #ifdef CONFIG_P2P bitfield_free(wpa_auth->ip_pool); #endif /* CONFIG_P2P */ os_free(wpa_auth->wpa_ie); group = wpa_auth->group; while (group) { prev = group; group = group->next; os_free(prev); } os_free(wpa_auth); } /** * wpa_reconfig - Update WPA authenticator configuration * @wpa_auth: Pointer to WPA authenticator data from wpa_init() * @conf: Configuration for WPA authenticator */ int wpa_reconfig(struct wpa_authenticator *wpa_auth, struct wpa_auth_config *conf) { struct wpa_group *group; if (wpa_auth == NULL) return 0; os_memcpy(&wpa_auth->conf, conf, sizeof(*conf)); if (wpa_auth_gen_wpa_ie(wpa_auth)) { wpa_printf(MSG_ERROR, "Could not generate WPA IE."); return -1; } /* * Reinitialize GTK to make sure it is suitable for the new * configuration. */ group = wpa_auth->group; group->GTK_len = wpa_cipher_key_len(wpa_auth->conf.wpa_group); group->GInit = TRUE; wpa_group_sm_step(wpa_auth, group); group->GInit = FALSE; wpa_group_sm_step(wpa_auth, group); return 0; } struct wpa_state_machine * wpa_auth_sta_init(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *p2p_dev_addr) { struct wpa_state_machine *sm; if (wpa_auth->group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) return NULL; sm = os_zalloc(sizeof(struct wpa_state_machine)); if (sm == NULL) return NULL; os_memcpy(sm->addr, addr, ETH_ALEN); if (p2p_dev_addr) os_memcpy(sm->p2p_dev_addr, p2p_dev_addr, ETH_ALEN); sm->wpa_auth = wpa_auth; sm->group = wpa_auth->group; wpa_group_get(sm->wpa_auth, sm->group); return sm; } int wpa_auth_sta_associated(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm) { if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL) return -1; #ifdef CONFIG_IEEE80211R_AP if (sm->ft_completed) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "FT authentication already completed - do not " "start 4-way handshake"); /* Go to PTKINITDONE state to allow GTK rekeying */ sm->wpa_ptk_state = WPA_PTK_PTKINITDONE; sm->Pair = TRUE; return 0; } #endif /* CONFIG_IEEE80211R_AP */ #ifdef CONFIG_FILS if (sm->fils_completed) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "FILS authentication already completed - do not start 4-way handshake"); /* Go to PTKINITDONE state to allow GTK rekeying */ sm->wpa_ptk_state = WPA_PTK_PTKINITDONE; sm->Pair = TRUE; return 0; } #endif /* CONFIG_FILS */ if (sm->started) { os_memset(&sm->key_replay, 0, sizeof(sm->key_replay)); sm->ReAuthenticationRequest = TRUE; return wpa_sm_step(sm); } wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "start authentication"); sm->started = 1; sm->Init = TRUE; if (wpa_sm_step(sm) == 1) return 1; /* should not really happen */ sm->Init = FALSE; sm->AuthenticationRequest = TRUE; return wpa_sm_step(sm); } void wpa_auth_sta_no_wpa(struct wpa_state_machine *sm) { /* WPA/RSN was not used - clear WPA state. This is needed if the STA * reassociates back to the same AP while the previous entry for the * STA has not yet been removed. */ if (sm == NULL) return; sm->wpa_key_mgmt = 0; } static void wpa_free_sta_sm(struct wpa_state_machine *sm) { #ifdef CONFIG_P2P if (WPA_GET_BE32(sm->ip_addr)) { u32 start; wpa_printf(MSG_DEBUG, "P2P: Free assigned IP " "address %u.%u.%u.%u from " MACSTR, sm->ip_addr[0], sm->ip_addr[1], sm->ip_addr[2], sm->ip_addr[3], MAC2STR(sm->addr)); start = WPA_GET_BE32(sm->wpa_auth->conf.ip_addr_start); bitfield_clear(sm->wpa_auth->ip_pool, WPA_GET_BE32(sm->ip_addr) - start); } #endif /* CONFIG_P2P */ if (sm->GUpdateStationKeys) { sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; } #ifdef CONFIG_IEEE80211R_AP os_free(sm->assoc_resp_ftie); wpabuf_free(sm->ft_pending_req_ies); #endif /* CONFIG_IEEE80211R_AP */ os_free(sm->last_rx_eapol_key); os_free(sm->wpa_ie); wpa_group_put(sm->wpa_auth, sm->group); os_free(sm); } void wpa_auth_sta_deinit(struct wpa_state_machine *sm) { if (sm == NULL) return; if (sm->wpa_auth->conf.wpa_strict_rekey && sm->has_GTK) { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "strict rekeying - force GTK rekey since STA " "is leaving"); if (eloop_deplete_timeout(0, 500000, wpa_rekey_gtk, sm->wpa_auth, NULL) == -1) eloop_register_timeout(0, 500000, wpa_rekey_gtk, sm->wpa_auth, NULL); } eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm); sm->pending_1_of_4_timeout = 0; eloop_cancel_timeout(wpa_sm_call_step, sm, NULL); eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm); #ifdef CONFIG_IEEE80211R_AP wpa_ft_sta_deinit(sm); #endif /* CONFIG_IEEE80211R_AP */ if (sm->in_step_loop) { /* Must not free state machine while wpa_sm_step() is running. * Freeing will be completed in the end of wpa_sm_step(). */ wpa_printf(MSG_DEBUG, "WPA: Registering pending STA state " "machine deinit for " MACSTR, MAC2STR(sm->addr)); sm->pending_deinit = 1; } else wpa_free_sta_sm(sm); } static void wpa_request_new_ptk(struct wpa_state_machine *sm) { if (sm == NULL) return; sm->PTKRequest = TRUE; sm->PTK_valid = 0; } static int wpa_replay_counter_valid(struct wpa_key_replay_counter *ctr, const u8 *replay_counter) { int i; for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) { if (!ctr[i].valid) break; if (os_memcmp(replay_counter, ctr[i].counter, WPA_REPLAY_COUNTER_LEN) == 0) return 1; } return 0; } static void wpa_replay_counter_mark_invalid(struct wpa_key_replay_counter *ctr, const u8 *replay_counter) { int i; for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) { if (ctr[i].valid && (replay_counter == NULL || os_memcmp(replay_counter, ctr[i].counter, WPA_REPLAY_COUNTER_LEN) == 0)) ctr[i].valid = FALSE; } } #ifdef CONFIG_IEEE80211R_AP static int ft_check_msg_2_of_4(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, struct wpa_eapol_ie_parse *kde) { struct wpa_ie_data ie; struct rsn_mdie *mdie; if (wpa_parse_wpa_ie_rsn(kde->rsn_ie, kde->rsn_ie_len, &ie) < 0 || ie.num_pmkid != 1 || ie.pmkid == NULL) { wpa_printf(MSG_DEBUG, "FT: No PMKR1Name in " "FT 4-way handshake message 2/4"); return -1; } os_memcpy(sm->sup_pmk_r1_name, ie.pmkid, PMKID_LEN); wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from Supplicant", sm->sup_pmk_r1_name, PMKID_LEN); if (!kde->mdie || !kde->ftie) { wpa_printf(MSG_DEBUG, "FT: No %s in FT 4-way handshake " "message 2/4", kde->mdie ? "FTIE" : "MDIE"); return -1; } mdie = (struct rsn_mdie *) (kde->mdie + 2); if (kde->mdie[1] < sizeof(struct rsn_mdie) || os_memcmp(wpa_auth->conf.mobility_domain, mdie->mobility_domain, MOBILITY_DOMAIN_ID_LEN) != 0) { wpa_printf(MSG_DEBUG, "FT: MDIE mismatch"); return -1; } if (sm->assoc_resp_ftie && (kde->ftie[1] != sm->assoc_resp_ftie[1] || os_memcmp(kde->ftie, sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]) != 0)) { wpa_printf(MSG_DEBUG, "FT: FTIE mismatch"); wpa_hexdump(MSG_DEBUG, "FT: FTIE in EAPOL-Key msg 2/4", kde->ftie, kde->ftie_len); wpa_hexdump(MSG_DEBUG, "FT: FTIE in (Re)AssocResp", sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]); return -1; } return 0; } #endif /* CONFIG_IEEE80211R_AP */ static int wpa_receive_error_report(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int group) { /* Supplicant reported a Michael MIC error */ wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key Error Request " "(STA detected Michael MIC failure (group=%d))", group); if (group && wpa_auth->conf.wpa_group != WPA_CIPHER_TKIP) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "ignore Michael MIC failure report since " "group cipher is not TKIP"); } else if (!group && sm->pairwise != WPA_CIPHER_TKIP) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "ignore Michael MIC failure report since " "pairwise cipher is not TKIP"); } else { if (wpa_auth_mic_failure_report(wpa_auth, sm->addr) > 0) return 1; /* STA entry was removed */ sm->dot11RSNAStatsTKIPRemoteMICFailures++; wpa_auth->dot11RSNAStatsTKIPRemoteMICFailures++; } /* * Error report is not a request for a new key handshake, but since * Authenticator may do it, let's change the keys now anyway. */ wpa_request_new_ptk(sm); return 0; } static int wpa_try_alt_snonce(struct wpa_state_machine *sm, u8 *data, size_t data_len) { struct wpa_ptk PTK; int ok = 0; const u8 *pmk = NULL; size_t pmk_len; os_memset(&PTK, 0, sizeof(PTK)); for (;;) { if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) && !wpa_key_mgmt_sae(sm->wpa_key_mgmt)) { pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, sm->p2p_dev_addr, pmk, &pmk_len); if (pmk == NULL) break; #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft_psk(sm->wpa_key_mgmt)) { os_memcpy(sm->xxkey, pmk, pmk_len); sm->xxkey_len = pmk_len; } #endif /* CONFIG_IEEE80211R_AP */ } else { pmk = sm->PMK; pmk_len = sm->pmk_len; } if (wpa_derive_ptk(sm, sm->alt_SNonce, pmk, pmk_len, &PTK) < 0) break; if (wpa_verify_key_mic(sm->wpa_key_mgmt, pmk_len, &PTK, data, data_len) == 0) { ok = 1; break; } if (!wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) || wpa_key_mgmt_sae(sm->wpa_key_mgmt)) break; } if (!ok) { wpa_printf(MSG_DEBUG, "WPA: Earlier SNonce did not result in matching MIC"); return -1; } wpa_printf(MSG_DEBUG, "WPA: Earlier SNonce resulted in matching MIC"); sm->alt_snonce_valid = 0; os_memcpy(sm->SNonce, sm->alt_SNonce, WPA_NONCE_LEN); os_memcpy(&sm->PTK, &PTK, sizeof(PTK)); sm->PTK_valid = TRUE; return 0; } void wpa_receive(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, u8 *data, size_t data_len) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u16 key_info, key_data_length; enum { PAIRWISE_2, PAIRWISE_4, GROUP_2, REQUEST } msg; char *msgtxt; struct wpa_eapol_ie_parse kde; const u8 *key_data; size_t keyhdrlen, mic_len; u8 *mic; if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL) return; wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL data", data, data_len); mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len); keyhdrlen = sizeof(*key) + mic_len + 2; if (data_len < sizeof(*hdr) + keyhdrlen) { wpa_printf(MSG_DEBUG, "WPA: Ignore too short EAPOL-Key frame"); return; } hdr = (struct ieee802_1x_hdr *) data; key = (struct wpa_eapol_key *) (hdr + 1); mic = (u8 *) (key + 1); key_info = WPA_GET_BE16(key->key_info); key_data = mic + mic_len + 2; key_data_length = WPA_GET_BE16(mic + mic_len); wpa_printf(MSG_DEBUG, "WPA: Received EAPOL-Key from " MACSTR " key_info=0x%x type=%u mic_len=%u key_data_length=%u", MAC2STR(sm->addr), key_info, key->type, (unsigned int) mic_len, key_data_length); wpa_hexdump(MSG_MSGDUMP, "WPA: EAPOL-Key header (ending before Key MIC)", key, sizeof(*key)); wpa_hexdump(MSG_MSGDUMP, "WPA: EAPOL-Key Key MIC", mic, mic_len); if (key_data_length > data_len - sizeof(*hdr) - keyhdrlen) { wpa_printf(MSG_INFO, "WPA: Invalid EAPOL-Key frame - " "key_data overflow (%d > %lu)", key_data_length, (unsigned long) (data_len - sizeof(*hdr) - keyhdrlen)); return; } if (sm->wpa == WPA_VERSION_WPA2) { if (key->type == EAPOL_KEY_TYPE_WPA) { /* * Some deployed station implementations seem to send * msg 4/4 with incorrect type value in WPA2 mode. */ wpa_printf(MSG_DEBUG, "Workaround: Allow EAPOL-Key " "with unexpected WPA type in RSN mode"); } else if (key->type != EAPOL_KEY_TYPE_RSN) { wpa_printf(MSG_DEBUG, "Ignore EAPOL-Key with " "unexpected type %d in RSN mode", key->type); return; } } else { if (key->type != EAPOL_KEY_TYPE_WPA) { wpa_printf(MSG_DEBUG, "Ignore EAPOL-Key with " "unexpected type %d in WPA mode", key->type); return; } } wpa_hexdump(MSG_DEBUG, "WPA: Received Key Nonce", key->key_nonce, WPA_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPA: Received Replay Counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); /* FIX: verify that the EAPOL-Key frame was encrypted if pairwise keys * are set */ if (key_info & WPA_KEY_INFO_SMK_MESSAGE) { wpa_printf(MSG_DEBUG, "WPA: Ignore SMK message"); return; } if (key_info & WPA_KEY_INFO_REQUEST) { msg = REQUEST; msgtxt = "Request"; } else if (!(key_info & WPA_KEY_INFO_KEY_TYPE)) { msg = GROUP_2; msgtxt = "2/2 Group"; } else if (key_data_length == 0 || (mic_len == 0 && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA) && key_data_length == AES_BLOCK_SIZE)) { msg = PAIRWISE_4; msgtxt = "4/4 Pairwise"; } else { msg = PAIRWISE_2; msgtxt = "2/4 Pairwise"; } if (msg == REQUEST || msg == PAIRWISE_2 || msg == PAIRWISE_4 || msg == GROUP_2) { u16 ver = key_info & WPA_KEY_INFO_TYPE_MASK; if (sm->pairwise == WPA_CIPHER_CCMP || sm->pairwise == WPA_CIPHER_GCMP) { if (wpa_use_cmac(sm->wpa_key_mgmt) && !wpa_use_akm_defined(sm->wpa_key_mgmt) && ver != WPA_KEY_INFO_TYPE_AES_128_CMAC) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING, "advertised support for " "AES-128-CMAC, but did not " "use it"); return; } if (!wpa_use_cmac(sm->wpa_key_mgmt) && !wpa_use_akm_defined(sm->wpa_key_mgmt) && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING, "did not use HMAC-SHA1-AES " "with CCMP/GCMP"); return; } } if (wpa_use_akm_defined(sm->wpa_key_mgmt) && ver != WPA_KEY_INFO_TYPE_AKM_DEFINED) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING, "did not use EAPOL-Key descriptor version 0 as required for AKM-defined cases"); return; } } if (key_info & WPA_KEY_INFO_REQUEST) { if (sm->req_replay_counter_used && os_memcmp(key->replay_counter, sm->req_replay_counter, WPA_REPLAY_COUNTER_LEN) <= 0) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING, "received EAPOL-Key request with " "replayed counter"); return; } } if (!(key_info & WPA_KEY_INFO_REQUEST) && !wpa_replay_counter_valid(sm->key_replay, key->replay_counter)) { int i; if (msg == PAIRWISE_2 && wpa_replay_counter_valid(sm->prev_key_replay, key->replay_counter) && sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING && os_memcmp(sm->SNonce, key->key_nonce, WPA_NONCE_LEN) != 0) { /* * Some supplicant implementations (e.g., Windows XP * WZC) update SNonce for each EAPOL-Key 2/4. This * breaks the workaround on accepting any of the * pending requests, so allow the SNonce to be updated * even if we have already sent out EAPOL-Key 3/4. */ wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG, "Process SNonce update from STA " "based on retransmitted EAPOL-Key " "1/4"); sm->update_snonce = 1; os_memcpy(sm->alt_SNonce, sm->SNonce, WPA_NONCE_LEN); sm->alt_snonce_valid = TRUE; os_memcpy(sm->alt_replay_counter, sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN); goto continue_processing; } if (msg == PAIRWISE_4 && sm->alt_snonce_valid && sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING && os_memcmp(key->replay_counter, sm->alt_replay_counter, WPA_REPLAY_COUNTER_LEN) == 0) { /* * Supplicant may still be using the old SNonce since * there was two EAPOL-Key 2/4 messages and they had * different SNonce values. */ wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG, "Try to process received EAPOL-Key 4/4 based on old Replay Counter and SNonce from an earlier EAPOL-Key 1/4"); goto continue_processing; } if (msg == PAIRWISE_2 && wpa_replay_counter_valid(sm->prev_key_replay, key->replay_counter) && sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG, "ignore retransmitted EAPOL-Key %s - " "SNonce did not change", msgtxt); } else { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG, "received EAPOL-Key %s with " "unexpected replay counter", msgtxt); } for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) { if (!sm->key_replay[i].valid) break; wpa_hexdump(MSG_DEBUG, "pending replay counter", sm->key_replay[i].counter, WPA_REPLAY_COUNTER_LEN); } wpa_hexdump(MSG_DEBUG, "received replay counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); return; } continue_processing: #ifdef CONFIG_FILS if (sm->wpa == WPA_VERSION_WPA2 && mic_len == 0 && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG, "WPA: Encr Key Data bit not set even though AEAD cipher is supposed to be used - drop frame"); return; } #endif /* CONFIG_FILS */ switch (msg) { case PAIRWISE_2: if (sm->wpa_ptk_state != WPA_PTK_PTKSTART && sm->wpa_ptk_state != WPA_PTK_PTKCALCNEGOTIATING && (!sm->update_snonce || sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING)) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key msg 2/4 in " "invalid state (%d) - dropped", sm->wpa_ptk_state); return; } random_add_randomness(key->key_nonce, WPA_NONCE_LEN); if (sm->group->reject_4way_hs_for_entropy) { /* * The system did not have enough entropy to generate * strong random numbers. Reject the first 4-way * handshake(s) and collect some entropy based on the * information from it. Once enough entropy is * available, the next atempt will trigger GMK/Key * Counter update and the station will be allowed to * continue. */ wpa_printf(MSG_DEBUG, "WPA: Reject 4-way handshake to " "collect more entropy for random number " "generation"); random_mark_pool_ready(); wpa_sta_disconnect(wpa_auth, sm->addr, WLAN_REASON_PREV_AUTH_NOT_VALID); return; } break; case PAIRWISE_4: if (sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING || !sm->PTK_valid) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key msg 4/4 in " "invalid state (%d) - dropped", sm->wpa_ptk_state); return; } break; case GROUP_2: if (sm->wpa_ptk_group_state != WPA_PTK_GROUP_REKEYNEGOTIATING || !sm->PTK_valid) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key msg 2/2 in " "invalid state (%d) - dropped", sm->wpa_ptk_group_state); return; } break; case REQUEST: break; } wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG, "received EAPOL-Key frame (%s)", msgtxt); if (key_info & WPA_KEY_INFO_ACK) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received invalid EAPOL-Key: Key Ack set"); return; } if (!wpa_key_mgmt_fils(sm->wpa_key_mgmt) && !(key_info & WPA_KEY_INFO_MIC)) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received invalid EAPOL-Key: Key MIC not set"); return; } #ifdef CONFIG_FILS if (wpa_key_mgmt_fils(sm->wpa_key_mgmt) && (key_info & WPA_KEY_INFO_MIC)) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received invalid EAPOL-Key: Key MIC set"); return; } #endif /* CONFIG_FILS */ sm->MICVerified = FALSE; if (sm->PTK_valid && !sm->update_snonce) { if (mic_len && wpa_verify_key_mic(sm->wpa_key_mgmt, sm->pmk_len, &sm->PTK, data, data_len) && (msg != PAIRWISE_4 || !sm->alt_snonce_valid || wpa_try_alt_snonce(sm, data, data_len))) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key with invalid MIC"); return; } #ifdef CONFIG_FILS if (!mic_len && wpa_aead_decrypt(sm, &sm->PTK, data, data_len, &key_data_length) < 0) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key with invalid MIC"); return; } #endif /* CONFIG_FILS */ sm->MICVerified = TRUE; eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm); sm->pending_1_of_4_timeout = 0; } if (key_info & WPA_KEY_INFO_REQUEST) { if (sm->MICVerified) { sm->req_replay_counter_used = 1; os_memcpy(sm->req_replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); } else { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key request with " "invalid MIC"); return; } /* * TODO: should decrypt key data field if encryption was used; * even though MAC address KDE is not normally encrypted, * supplicant is allowed to encrypt it. */ if (key_info & WPA_KEY_INFO_ERROR) { if (wpa_receive_error_report( wpa_auth, sm, !(key_info & WPA_KEY_INFO_KEY_TYPE)) > 0) return; /* STA entry was removed */ } else if (key_info & WPA_KEY_INFO_KEY_TYPE) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key Request for new " "4-Way Handshake"); wpa_request_new_ptk(sm); } else if (key_data_length > 0 && wpa_parse_kde_ies(key_data, key_data_length, &kde) == 0 && kde.mac_addr) { } else { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key Request for GTK " "rekeying"); eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL); wpa_rekey_gtk(wpa_auth, NULL); } } else { /* Do not allow the same key replay counter to be reused. */ wpa_replay_counter_mark_invalid(sm->key_replay, key->replay_counter); if (msg == PAIRWISE_2) { /* * Maintain a copy of the pending EAPOL-Key frames in * case the EAPOL-Key frame was retransmitted. This is * needed to allow EAPOL-Key msg 2/4 reply to another * pending msg 1/4 to update the SNonce to work around * unexpected supplicant behavior. */ os_memcpy(sm->prev_key_replay, sm->key_replay, sizeof(sm->key_replay)); } else { os_memset(sm->prev_key_replay, 0, sizeof(sm->prev_key_replay)); } /* * Make sure old valid counters are not accepted anymore and * do not get copied again. */ wpa_replay_counter_mark_invalid(sm->key_replay, NULL); } os_free(sm->last_rx_eapol_key); sm->last_rx_eapol_key = os_memdup(data, data_len); if (sm->last_rx_eapol_key == NULL) return; sm->last_rx_eapol_key_len = data_len; sm->rx_eapol_key_secure = !!(key_info & WPA_KEY_INFO_SECURE); sm->EAPOLKeyReceived = TRUE; sm->EAPOLKeyPairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE); sm->EAPOLKeyRequest = !!(key_info & WPA_KEY_INFO_REQUEST); os_memcpy(sm->SNonce, key->key_nonce, WPA_NONCE_LEN); wpa_sm_step(sm); } static int wpa_gmk_to_gtk(const u8 *gmk, const char *label, const u8 *addr, const u8 *gnonce, u8 *gtk, size_t gtk_len) { u8 data[ETH_ALEN + WPA_NONCE_LEN + 8 + WPA_GTK_MAX_LEN]; u8 *pos; int ret = 0; /* GTK = PRF-X(GMK, "Group key expansion", * AA || GNonce || Time || random data) * The example described in the IEEE 802.11 standard uses only AA and * GNonce as inputs here. Add some more entropy since this derivation * is done only at the Authenticator and as such, does not need to be * exactly same. */ os_memset(data, 0, sizeof(data)); os_memcpy(data, addr, ETH_ALEN); os_memcpy(data + ETH_ALEN, gnonce, WPA_NONCE_LEN); pos = data + ETH_ALEN + WPA_NONCE_LEN; wpa_get_ntp_timestamp(pos); pos += 8; if (random_get_bytes(pos, gtk_len) < 0) ret = -1; #ifdef CONFIG_SHA384 if (sha384_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data), gtk, gtk_len) < 0) ret = -1; #else /* CONFIG_SHA384 */ #ifdef CONFIG_SHA256 if (sha256_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data), gtk, gtk_len) < 0) ret = -1; #else /* CONFIG_SHA256 */ if (sha1_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data), gtk, gtk_len) < 0) ret = -1; #endif /* CONFIG_SHA256 */ #endif /* CONFIG_SHA384 */ return ret; } static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx) { struct wpa_authenticator *wpa_auth = eloop_ctx; struct wpa_state_machine *sm = timeout_ctx; sm->pending_1_of_4_timeout = 0; wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "EAPOL-Key timeout"); sm->TimeoutEvt = TRUE; wpa_sm_step(sm); } void __wpa_send_eapol(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int key_info, const u8 *key_rsc, const u8 *nonce, const u8 *kde, size_t kde_len, int keyidx, int encr, int force_version) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; size_t len, mic_len, keyhdrlen; int alg; int key_data_len, pad_len = 0; u8 *buf, *pos; int version, pairwise; int i; u8 *key_mic, *key_data; mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len); keyhdrlen = sizeof(*key) + mic_len + 2; len = sizeof(struct ieee802_1x_hdr) + keyhdrlen; if (force_version) version = force_version; else if (wpa_use_akm_defined(sm->wpa_key_mgmt)) version = WPA_KEY_INFO_TYPE_AKM_DEFINED; else if (wpa_use_cmac(sm->wpa_key_mgmt)) version = WPA_KEY_INFO_TYPE_AES_128_CMAC; else if (sm->pairwise != WPA_CIPHER_TKIP) version = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else version = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; pairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE); wpa_printf(MSG_DEBUG, "WPA: Send EAPOL(version=%d secure=%d mic=%d " "ack=%d install=%d pairwise=%d kde_len=%lu keyidx=%d " "encr=%d)", version, (key_info & WPA_KEY_INFO_SECURE) ? 1 : 0, (key_info & WPA_KEY_INFO_MIC) ? 1 : 0, (key_info & WPA_KEY_INFO_ACK) ? 1 : 0, (key_info & WPA_KEY_INFO_INSTALL) ? 1 : 0, pairwise, (unsigned long) kde_len, keyidx, encr); key_data_len = kde_len; if ((version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES || wpa_use_aes_key_wrap(sm->wpa_key_mgmt) || version == WPA_KEY_INFO_TYPE_AES_128_CMAC) && encr) { pad_len = key_data_len % 8; if (pad_len) pad_len = 8 - pad_len; key_data_len += pad_len + 8; } len += key_data_len; if (!mic_len && encr) len += AES_BLOCK_SIZE; hdr = os_zalloc(len); if (hdr == NULL) return; hdr->version = wpa_auth->conf.eapol_version; hdr->type = IEEE802_1X_TYPE_EAPOL_KEY; hdr->length = host_to_be16(len - sizeof(*hdr)); key = (struct wpa_eapol_key *) (hdr + 1); key_mic = (u8 *) (key + 1); key_data = ((u8 *) (hdr + 1)) + keyhdrlen; key->type = sm->wpa == WPA_VERSION_WPA2 ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info |= version; if (encr && sm->wpa == WPA_VERSION_WPA2) key_info |= WPA_KEY_INFO_ENCR_KEY_DATA; if (sm->wpa != WPA_VERSION_WPA2) key_info |= keyidx << WPA_KEY_INFO_KEY_INDEX_SHIFT; WPA_PUT_BE16(key->key_info, key_info); alg = pairwise ? sm->pairwise : wpa_auth->conf.wpa_group; if (sm->wpa == WPA_VERSION_WPA2 && !pairwise) WPA_PUT_BE16(key->key_length, 0); else WPA_PUT_BE16(key->key_length, wpa_cipher_key_len(alg)); for (i = RSNA_MAX_EAPOL_RETRIES - 1; i > 0; i--) { sm->key_replay[i].valid = sm->key_replay[i - 1].valid; os_memcpy(sm->key_replay[i].counter, sm->key_replay[i - 1].counter, WPA_REPLAY_COUNTER_LEN); } inc_byte_array(sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN); os_memcpy(key->replay_counter, sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN); wpa_hexdump(MSG_DEBUG, "WPA: Replay Counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); sm->key_replay[0].valid = TRUE; if (nonce) os_memcpy(key->key_nonce, nonce, WPA_NONCE_LEN); if (key_rsc) os_memcpy(key->key_rsc, key_rsc, WPA_KEY_RSC_LEN); if (kde && !encr) { os_memcpy(key_data, kde, kde_len); WPA_PUT_BE16(key_mic + mic_len, kde_len); #ifdef CONFIG_FILS } else if (!mic_len && kde) { const u8 *aad[1]; size_t aad_len[1]; WPA_PUT_BE16(key_mic, AES_BLOCK_SIZE + kde_len); wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data", kde, kde_len); wpa_hexdump_key(MSG_DEBUG, "WPA: KEK", sm->PTK.kek, sm->PTK.kek_len); /* AES-SIV AAD from EAPOL protocol version field (inclusive) to * to Key Data (exclusive). */ aad[0] = (u8 *) hdr; aad_len[0] = key_mic + 2 - (u8 *) hdr; if (aes_siv_encrypt(sm->PTK.kek, sm->PTK.kek_len, kde, kde_len, 1, aad, aad_len, key_mic + 2) < 0) { wpa_printf(MSG_DEBUG, "WPA: AES-SIV encryption failed"); return; } wpa_hexdump(MSG_DEBUG, "WPA: Encrypted Key Data from SIV", key_mic + 2, AES_BLOCK_SIZE + kde_len); #endif /* CONFIG_FILS */ } else if (encr && kde) { buf = os_zalloc(key_data_len); if (buf == NULL) { os_free(hdr); return; } pos = buf; os_memcpy(pos, kde, kde_len); pos += kde_len; if (pad_len) *pos++ = 0xdd; wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data", buf, key_data_len); if (version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES || wpa_use_aes_key_wrap(sm->wpa_key_mgmt) || version == WPA_KEY_INFO_TYPE_AES_128_CMAC) { wpa_printf(MSG_DEBUG, "WPA: Encrypt Key Data using AES-WRAP (KEK length %u)", (unsigned int) sm->PTK.kek_len); if (aes_wrap(sm->PTK.kek, sm->PTK.kek_len, (key_data_len - 8) / 8, buf, key_data)) { os_free(hdr); os_free(buf); return; } WPA_PUT_BE16(key_mic + mic_len, key_data_len); #ifndef CONFIG_NO_RC4 } else if (sm->PTK.kek_len == 16) { u8 ek[32]; wpa_printf(MSG_DEBUG, "WPA: Encrypt Key Data using RC4"); os_memcpy(key->key_iv, sm->group->Counter + WPA_NONCE_LEN - 16, 16); inc_byte_array(sm->group->Counter, WPA_NONCE_LEN); os_memcpy(ek, key->key_iv, 16); os_memcpy(ek + 16, sm->PTK.kek, sm->PTK.kek_len); os_memcpy(key_data, buf, key_data_len); rc4_skip(ek, 32, 256, key_data, key_data_len); WPA_PUT_BE16(key_mic + mic_len, key_data_len); #endif /* CONFIG_NO_RC4 */ } else { os_free(hdr); os_free(buf); return; } os_free(buf); } if (key_info & WPA_KEY_INFO_MIC) { if (!sm->PTK_valid || !mic_len) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "PTK not valid when sending EAPOL-Key " "frame"); os_free(hdr); return; } if (wpa_eapol_key_mic(sm->PTK.kck, sm->PTK.kck_len, sm->wpa_key_mgmt, version, (u8 *) hdr, len, key_mic) < 0) { os_free(hdr); return; } #ifdef CONFIG_TESTING_OPTIONS if (!pairwise && wpa_auth->conf.corrupt_gtk_rekey_mic_probability > 0.0 && drand48() < wpa_auth->conf.corrupt_gtk_rekey_mic_probability) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "Corrupting group EAPOL-Key Key MIC"); key_mic[0]++; } #endif /* CONFIG_TESTING_OPTIONS */ } wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_inc_EapolFramesTx, 1); wpa_auth_send_eapol(wpa_auth, sm->addr, (u8 *) hdr, len, sm->pairwise_set); os_free(hdr); } static void wpa_send_eapol(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int key_info, const u8 *key_rsc, const u8 *nonce, const u8 *kde, size_t kde_len, int keyidx, int encr) { int timeout_ms; int pairwise = key_info & WPA_KEY_INFO_KEY_TYPE; u32 ctr; if (sm == NULL) return; __wpa_send_eapol(wpa_auth, sm, key_info, key_rsc, nonce, kde, kde_len, keyidx, encr, 0); ctr = pairwise ? sm->TimeoutCtr : sm->GTimeoutCtr; if (ctr == 1 && wpa_auth->conf.tx_status) timeout_ms = pairwise ? eapol_key_timeout_first : eapol_key_timeout_first_group; else timeout_ms = eapol_key_timeout_subseq; if (wpa_auth->conf.wpa_disable_eapol_key_retries && (!pairwise || (key_info & WPA_KEY_INFO_MIC))) timeout_ms = eapol_key_timeout_no_retrans; if (pairwise && ctr == 1 && !(key_info & WPA_KEY_INFO_MIC)) sm->pending_1_of_4_timeout = 1; wpa_printf(MSG_DEBUG, "WPA: Use EAPOL-Key timeout of %u ms (retry " "counter %u)", timeout_ms, ctr); eloop_register_timeout(timeout_ms / 1000, (timeout_ms % 1000) * 1000, wpa_send_eapol_timeout, wpa_auth, sm); } static int wpa_verify_key_mic(int akmp, size_t pmk_len, struct wpa_ptk *PTK, u8 *data, size_t data_len) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u16 key_info; int ret = 0; u8 mic[WPA_EAPOL_KEY_MIC_MAX_LEN], *mic_pos; size_t mic_len = wpa_mic_len(akmp, pmk_len); if (data_len < sizeof(*hdr) + sizeof(*key)) return -1; hdr = (struct ieee802_1x_hdr *) data; key = (struct wpa_eapol_key *) (hdr + 1); mic_pos = (u8 *) (key + 1); key_info = WPA_GET_BE16(key->key_info); os_memcpy(mic, mic_pos, mic_len); os_memset(mic_pos, 0, mic_len); if (wpa_eapol_key_mic(PTK->kck, PTK->kck_len, akmp, key_info & WPA_KEY_INFO_TYPE_MASK, data, data_len, mic_pos) || os_memcmp_const(mic, mic_pos, mic_len) != 0) ret = -1; os_memcpy(mic_pos, mic, mic_len); return ret; } void wpa_remove_ptk(struct wpa_state_machine *sm) { sm->PTK_valid = FALSE; os_memset(&sm->PTK, 0, sizeof(sm->PTK)); if (wpa_auth_set_key(sm->wpa_auth, 0, WPA_ALG_NONE, sm->addr, 0, NULL, 0)) wpa_printf(MSG_DEBUG, "RSN: PTK removal from the driver failed"); sm->pairwise_set = FALSE; eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm); } int wpa_auth_sm_event(struct wpa_state_machine *sm, enum wpa_event event) { int remove_ptk = 1; if (sm == NULL) return -1; wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "event %d notification", event); switch (event) { case WPA_AUTH: #ifdef CONFIG_MESH /* PTKs are derived through AMPE */ if (wpa_auth_start_ampe(sm->wpa_auth, sm->addr)) { /* not mesh */ break; } return 0; #endif /* CONFIG_MESH */ case WPA_ASSOC: break; case WPA_DEAUTH: case WPA_DISASSOC: sm->DeauthenticationRequest = TRUE; break; case WPA_REAUTH: case WPA_REAUTH_EAPOL: if (!sm->started) { /* * When using WPS, we may end up here if the STA * manages to re-associate without the previous STA * entry getting removed. Consequently, we need to make * sure that the WPA state machines gets initialized * properly at this point. */ wpa_printf(MSG_DEBUG, "WPA state machine had not been " "started - initialize now"); sm->started = 1; sm->Init = TRUE; if (wpa_sm_step(sm) == 1) return 1; /* should not really happen */ sm->Init = FALSE; sm->AuthenticationRequest = TRUE; break; } if (sm->GUpdateStationKeys) { /* * Reauthentication cancels the pending group key * update for this STA. */ sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; sm->PtkGroupInit = TRUE; } sm->ReAuthenticationRequest = TRUE; break; case WPA_ASSOC_FT: #ifdef CONFIG_IEEE80211R_AP wpa_printf(MSG_DEBUG, "FT: Retry PTK configuration " "after association"); wpa_ft_install_ptk(sm); /* Using FT protocol, not WPA auth state machine */ sm->ft_completed = 1; return 0; #else /* CONFIG_IEEE80211R_AP */ break; #endif /* CONFIG_IEEE80211R_AP */ case WPA_ASSOC_FILS: #ifdef CONFIG_FILS wpa_printf(MSG_DEBUG, "FILS: TK configuration after association"); fils_set_tk(sm); sm->fils_completed = 1; return 0; #else /* CONFIG_FILS */ break; #endif /* CONFIG_FILS */ case WPA_DRV_STA_REMOVED: sm->tk_already_set = FALSE; return 0; } #ifdef CONFIG_IEEE80211R_AP sm->ft_completed = 0; #endif /* CONFIG_IEEE80211R_AP */ #ifdef CONFIG_IEEE80211W if (sm->mgmt_frame_prot && event == WPA_AUTH) remove_ptk = 0; #endif /* CONFIG_IEEE80211W */ #ifdef CONFIG_FILS if (wpa_key_mgmt_fils(sm->wpa_key_mgmt) && (event == WPA_AUTH || event == WPA_ASSOC)) remove_ptk = 0; #endif /* CONFIG_FILS */ if (remove_ptk) { sm->PTK_valid = FALSE; os_memset(&sm->PTK, 0, sizeof(sm->PTK)); if (event != WPA_REAUTH_EAPOL) wpa_remove_ptk(sm); } if (sm->in_step_loop) { /* * wpa_sm_step() is already running - avoid recursive call to * it by making the existing loop process the new update. */ sm->changed = TRUE; return 0; } return wpa_sm_step(sm); } SM_STATE(WPA_PTK, INITIALIZE) { SM_ENTRY_MA(WPA_PTK, INITIALIZE, wpa_ptk); if (sm->Init) { /* Init flag is not cleared here, so avoid busy * loop by claiming nothing changed. */ sm->changed = FALSE; } sm->keycount = 0; if (sm->GUpdateStationKeys) sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; if (sm->wpa == WPA_VERSION_WPA) sm->PInitAKeys = FALSE; if (1 /* Unicast cipher supported AND (ESS OR ((IBSS or WDS) and * Local AA > Remote AA)) */) { sm->Pair = TRUE; } wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 0); wpa_remove_ptk(sm); wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 0); sm->TimeoutCtr = 0; if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) || sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP || sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE) { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_authorized, 0); } } SM_STATE(WPA_PTK, DISCONNECT) { u16 reason = sm->disconnect_reason; SM_ENTRY_MA(WPA_PTK, DISCONNECT, wpa_ptk); sm->Disconnect = FALSE; sm->disconnect_reason = 0; if (!reason) reason = WLAN_REASON_PREV_AUTH_NOT_VALID; wpa_sta_disconnect(sm->wpa_auth, sm->addr, reason); } SM_STATE(WPA_PTK, DISCONNECTED) { SM_ENTRY_MA(WPA_PTK, DISCONNECTED, wpa_ptk); sm->DeauthenticationRequest = FALSE; } SM_STATE(WPA_PTK, AUTHENTICATION) { SM_ENTRY_MA(WPA_PTK, AUTHENTICATION, wpa_ptk); os_memset(&sm->PTK, 0, sizeof(sm->PTK)); sm->PTK_valid = FALSE; wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portControl_Auto, 1); wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 1); sm->AuthenticationRequest = FALSE; } static void wpa_group_ensure_init(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { if (group->first_sta_seen) return; /* * System has run bit further than at the time hostapd was started * potentially very early during boot up. This provides better chances * of collecting more randomness on embedded systems. Re-initialize the * GMK and Counter here to improve their strength if there was not * enough entropy available immediately after system startup. */ wpa_printf(MSG_DEBUG, "WPA: Re-initialize GMK/Counter on first " "station"); if (random_pool_ready() != 1) { wpa_printf(MSG_INFO, "WPA: Not enough entropy in random pool " "to proceed - reject first 4-way handshake"); group->reject_4way_hs_for_entropy = TRUE; } else { group->first_sta_seen = TRUE; group->reject_4way_hs_for_entropy = FALSE; } if (wpa_group_init_gmk_and_counter(wpa_auth, group) < 0 || wpa_gtk_update(wpa_auth, group) < 0 || wpa_group_config_group_keys(wpa_auth, group) < 0) { wpa_printf(MSG_INFO, "WPA: GMK/GTK setup failed"); group->first_sta_seen = FALSE; group->reject_4way_hs_for_entropy = TRUE; } } SM_STATE(WPA_PTK, AUTHENTICATION2) { SM_ENTRY_MA(WPA_PTK, AUTHENTICATION2, wpa_ptk); wpa_group_ensure_init(sm->wpa_auth, sm->group); sm->ReAuthenticationRequest = FALSE; /* * Definition of ANonce selection in IEEE Std 802.11i-2004 is somewhat * ambiguous. The Authenticator state machine uses a counter that is * incremented by one for each 4-way handshake. However, the security * analysis of 4-way handshake points out that unpredictable nonces * help in preventing precomputation attacks. Instead of the state * machine definition, use an unpredictable nonce value here to provide * stronger protection against potential precomputation attacks. */ if (random_get_bytes(sm->ANonce, WPA_NONCE_LEN)) { wpa_printf(MSG_ERROR, "WPA: Failed to get random data for " "ANonce."); sm->Disconnect = TRUE; return; } wpa_hexdump(MSG_DEBUG, "WPA: Assign ANonce", sm->ANonce, WPA_NONCE_LEN); /* IEEE 802.11i does not clear TimeoutCtr here, but this is more * logical place than INITIALIZE since AUTHENTICATION2 can be * re-entered on ReAuthenticationRequest without going through * INITIALIZE. */ sm->TimeoutCtr = 0; } static int wpa_auth_sm_ptk_update(struct wpa_state_machine *sm) { if (random_get_bytes(sm->ANonce, WPA_NONCE_LEN)) { wpa_printf(MSG_ERROR, "WPA: Failed to get random data for ANonce"); sm->Disconnect = TRUE; return -1; } wpa_hexdump(MSG_DEBUG, "WPA: Assign new ANonce", sm->ANonce, WPA_NONCE_LEN); sm->TimeoutCtr = 0; return 0; } SM_STATE(WPA_PTK, INITPMK) { u8 msk[2 * PMK_LEN]; size_t len = 2 * PMK_LEN; SM_ENTRY_MA(WPA_PTK, INITPMK, wpa_ptk); #ifdef CONFIG_IEEE80211R_AP sm->xxkey_len = 0; #endif /* CONFIG_IEEE80211R_AP */ if (sm->pmksa) { wpa_printf(MSG_DEBUG, "WPA: PMK from PMKSA cache"); os_memcpy(sm->PMK, sm->pmksa->pmk, sm->pmksa->pmk_len); sm->pmk_len = sm->pmksa->pmk_len; #ifdef CONFIG_DPP } else if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP) { wpa_printf(MSG_DEBUG, "DPP: No PMKSA cache entry for STA - reject connection"); sm->Disconnect = TRUE; sm->disconnect_reason = WLAN_REASON_INVALID_PMKID; return; #endif /* CONFIG_DPP */ } else if (wpa_auth_get_msk(sm->wpa_auth, sm->addr, msk, &len) == 0) { unsigned int pmk_len; if (wpa_key_mgmt_sha384(sm->wpa_key_mgmt)) pmk_len = PMK_LEN_SUITE_B_192; else pmk_len = PMK_LEN; wpa_printf(MSG_DEBUG, "WPA: PMK from EAPOL state machine " "(MSK len=%lu PMK len=%u)", (unsigned long) len, pmk_len); if (len < pmk_len) { wpa_printf(MSG_DEBUG, "WPA: MSK not long enough (%u) to create PMK (%u)", (unsigned int) len, (unsigned int) pmk_len); sm->Disconnect = TRUE; return; } os_memcpy(sm->PMK, msk, pmk_len); sm->pmk_len = pmk_len; #ifdef CONFIG_IEEE80211R_AP if (len >= 2 * PMK_LEN) { if (wpa_key_mgmt_sha384(sm->wpa_key_mgmt)) { os_memcpy(sm->xxkey, msk, SHA384_MAC_LEN); sm->xxkey_len = SHA384_MAC_LEN; } else { os_memcpy(sm->xxkey, msk + PMK_LEN, PMK_LEN); sm->xxkey_len = PMK_LEN; } } #endif /* CONFIG_IEEE80211R_AP */ } else { wpa_printf(MSG_DEBUG, "WPA: Could not get PMK, get_msk: %p", sm->wpa_auth->cb->get_msk); sm->Disconnect = TRUE; return; } os_memset(msk, 0, sizeof(msk)); sm->req_replay_counter_used = 0; /* IEEE 802.11i does not set keyRun to FALSE, but not doing this * will break reauthentication since EAPOL state machines may not be * get into AUTHENTICATING state that clears keyRun before WPA state * machine enters AUTHENTICATION2 state and goes immediately to INITPMK * state and takes PMK from the previously used AAA Key. This will * eventually fail in 4-Way Handshake because Supplicant uses PMK * derived from the new AAA Key. Setting keyRun = FALSE here seems to * be good workaround for this issue. */ wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun, 0); } SM_STATE(WPA_PTK, INITPSK) { const u8 *psk; size_t psk_len; SM_ENTRY_MA(WPA_PTK, INITPSK, wpa_ptk); psk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, sm->p2p_dev_addr, NULL, &psk_len); if (psk) { os_memcpy(sm->PMK, psk, psk_len); sm->pmk_len = psk_len; #ifdef CONFIG_IEEE80211R_AP os_memcpy(sm->xxkey, psk, PMK_LEN); sm->xxkey_len = PMK_LEN; #endif /* CONFIG_IEEE80211R_AP */ } #ifdef CONFIG_SAE if (wpa_auth_uses_sae(sm) && sm->pmksa) { wpa_printf(MSG_DEBUG, "SAE: PMK from PMKSA cache"); os_memcpy(sm->PMK, sm->pmksa->pmk, sm->pmksa->pmk_len); sm->pmk_len = sm->pmksa->pmk_len; } #endif /* CONFIG_SAE */ sm->req_replay_counter_used = 0; } SM_STATE(WPA_PTK, PTKSTART) { u8 buf[2 + RSN_SELECTOR_LEN + PMKID_LEN], *pmkid = NULL; size_t pmkid_len = 0; SM_ENTRY_MA(WPA_PTK, PTKSTART, wpa_ptk); sm->PTKRequest = FALSE; sm->TimeoutEvt = FALSE; sm->alt_snonce_valid = FALSE; sm->TimeoutCtr++; if (sm->TimeoutCtr > sm->wpa_auth->conf.wpa_pairwise_update_count) { /* No point in sending the EAPOL-Key - we will disconnect * immediately following this. */ return; } wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "sending 1/4 msg of 4-Way Handshake"); /* * For infrastructure BSS cases, it is better for the AP not to include * the PMKID KDE in EAPOL-Key msg 1/4 since it could be used to initiate * offline search for the passphrase/PSK without having to be able to * capture a 4-way handshake from a STA that has access to the network. * * For IBSS cases, addition of PMKID KDE could be considered even with * WPA2-PSK cases that use multiple PSKs, but only if there is a single * possible PSK for this STA. However, this should not be done unless * there is support for using that information on the supplicant side. * The concern about exposing PMKID unnecessarily in infrastructure BSS * cases would also apply here, but at least in the IBSS case, this * would cover a potential real use case. */ if (sm->wpa == WPA_VERSION_WPA2 && (wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) || (sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE && sm->pmksa) || wpa_key_mgmt_sae(sm->wpa_key_mgmt)) && sm->wpa_key_mgmt != WPA_KEY_MGMT_OSEN) { pmkid = buf; pmkid_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN; pmkid[0] = WLAN_EID_VENDOR_SPECIFIC; pmkid[1] = RSN_SELECTOR_LEN + PMKID_LEN; RSN_SELECTOR_PUT(&pmkid[2], RSN_KEY_DATA_PMKID); if (sm->pmksa) { wpa_hexdump(MSG_DEBUG, "RSN: Message 1/4 PMKID from PMKSA entry", sm->pmksa->pmkid, PMKID_LEN); os_memcpy(&pmkid[2 + RSN_SELECTOR_LEN], sm->pmksa->pmkid, PMKID_LEN); } else if (wpa_key_mgmt_suite_b(sm->wpa_key_mgmt)) { /* No KCK available to derive PMKID */ wpa_printf(MSG_DEBUG, "RSN: No KCK available to derive PMKID for message 1/4"); pmkid = NULL; #ifdef CONFIG_SAE } else if (wpa_key_mgmt_sae(sm->wpa_key_mgmt)) { if (sm->pmkid_set) { wpa_hexdump(MSG_DEBUG, "RSN: Message 1/4 PMKID from SAE", sm->pmkid, PMKID_LEN); os_memcpy(&pmkid[2 + RSN_SELECTOR_LEN], sm->pmkid, PMKID_LEN); } else { /* No PMKID available */ wpa_printf(MSG_DEBUG, "RSN: No SAE PMKID available for message 1/4"); pmkid = NULL; } #endif /* CONFIG_SAE */ } else { /* * Calculate PMKID since no PMKSA cache entry was * available with pre-calculated PMKID. */ rsn_pmkid(sm->PMK, sm->pmk_len, sm->wpa_auth->addr, sm->addr, &pmkid[2 + RSN_SELECTOR_LEN], sm->wpa_key_mgmt); wpa_hexdump(MSG_DEBUG, "RSN: Message 1/4 PMKID derived from PMK", &pmkid[2 + RSN_SELECTOR_LEN], PMKID_LEN); } } wpa_send_eapol(sm->wpa_auth, sm, WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL, sm->ANonce, pmkid, pmkid_len, 0, 0); } static int wpa_derive_ptk(struct wpa_state_machine *sm, const u8 *snonce, const u8 *pmk, unsigned int pmk_len, struct wpa_ptk *ptk) { #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) return wpa_auth_derive_ptk_ft(sm, pmk, ptk); #endif /* CONFIG_IEEE80211R_AP */ return wpa_pmk_to_ptk(pmk, pmk_len, "Pairwise key expansion", sm->wpa_auth->addr, sm->addr, sm->ANonce, snonce, ptk, sm->wpa_key_mgmt, sm->pairwise); } #ifdef CONFIG_FILS int fils_auth_pmk_to_ptk(struct wpa_state_machine *sm, const u8 *pmk, size_t pmk_len, const u8 *snonce, const u8 *anonce, const u8 *dhss, size_t dhss_len, struct wpabuf *g_sta, struct wpabuf *g_ap) { u8 ick[FILS_ICK_MAX_LEN]; size_t ick_len; int res; u8 fils_ft[FILS_FT_MAX_LEN]; size_t fils_ft_len = 0; res = fils_pmk_to_ptk(pmk, pmk_len, sm->addr, sm->wpa_auth->addr, snonce, anonce, dhss, dhss_len, &sm->PTK, ick, &ick_len, sm->wpa_key_mgmt, sm->pairwise, fils_ft, &fils_ft_len); if (res < 0) return res; sm->PTK_valid = TRUE; sm->tk_already_set = FALSE; #ifdef CONFIG_IEEE80211R_AP if (fils_ft_len) { struct wpa_authenticator *wpa_auth = sm->wpa_auth; struct wpa_auth_config *conf = &wpa_auth->conf; u8 pmk_r0[PMK_LEN_MAX], pmk_r0_name[WPA_PMK_NAME_LEN]; int use_sha384 = wpa_key_mgmt_sha384(sm->wpa_key_mgmt); size_t pmk_r0_len = use_sha384 ? SHA384_MAC_LEN : PMK_LEN; if (wpa_derive_pmk_r0(fils_ft, fils_ft_len, conf->ssid, conf->ssid_len, conf->mobility_domain, conf->r0_key_holder, conf->r0_key_holder_len, sm->addr, pmk_r0, pmk_r0_name, use_sha384) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "FILS+FT: PMK-R0", pmk_r0, pmk_r0_len); wpa_hexdump(MSG_DEBUG, "FILS+FT: PMKR0Name", pmk_r0_name, WPA_PMK_NAME_LEN); wpa_ft_store_pmk_fils(sm, pmk_r0, pmk_r0_name); os_memset(fils_ft, 0, sizeof(fils_ft)); } #endif /* CONFIG_IEEE80211R_AP */ res = fils_key_auth_sk(ick, ick_len, snonce, anonce, sm->addr, sm->wpa_auth->addr, g_sta ? wpabuf_head(g_sta) : NULL, g_sta ? wpabuf_len(g_sta) : 0, g_ap ? wpabuf_head(g_ap) : NULL, g_ap ? wpabuf_len(g_ap) : 0, sm->wpa_key_mgmt, sm->fils_key_auth_sta, sm->fils_key_auth_ap, &sm->fils_key_auth_len); os_memset(ick, 0, sizeof(ick)); /* Store nonces for (Re)Association Request/Response frame processing */ os_memcpy(sm->SNonce, snonce, FILS_NONCE_LEN); os_memcpy(sm->ANonce, anonce, FILS_NONCE_LEN); return res; } static int wpa_aead_decrypt(struct wpa_state_machine *sm, struct wpa_ptk *ptk, u8 *buf, size_t buf_len, u16 *_key_data_len) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u8 *pos; u16 key_data_len; u8 *tmp; const u8 *aad[1]; size_t aad_len[1]; hdr = (struct ieee802_1x_hdr *) buf; key = (struct wpa_eapol_key *) (hdr + 1); pos = (u8 *) (key + 1); key_data_len = WPA_GET_BE16(pos); if (key_data_len < AES_BLOCK_SIZE || key_data_len > buf_len - sizeof(*hdr) - sizeof(*key) - 2) { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO, "No room for AES-SIV data in the frame"); return -1; } pos += 2; /* Pointing at the Encrypted Key Data field */ tmp = os_malloc(key_data_len); if (!tmp) return -1; /* AES-SIV AAD from EAPOL protocol version field (inclusive) to * to Key Data (exclusive). */ aad[0] = buf; aad_len[0] = pos - buf; if (aes_siv_decrypt(ptk->kek, ptk->kek_len, pos, key_data_len, 1, aad, aad_len, tmp) < 0) { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO, "Invalid AES-SIV data in the frame"); bin_clear_free(tmp, key_data_len); return -1; } /* AEAD decryption and validation completed successfully */ key_data_len -= AES_BLOCK_SIZE; wpa_hexdump_key(MSG_DEBUG, "WPA: Decrypted Key Data", tmp, key_data_len); /* Replace Key Data field with the decrypted version */ os_memcpy(pos, tmp, key_data_len); pos -= 2; /* Key Data Length field */ WPA_PUT_BE16(pos, key_data_len); bin_clear_free(tmp, key_data_len); if (_key_data_len) *_key_data_len = key_data_len; return 0; } const u8 * wpa_fils_validate_fils_session(struct wpa_state_machine *sm, const u8 *ies, size_t ies_len, const u8 *fils_session) { const u8 *ie, *end; const u8 *session = NULL; if (!wpa_key_mgmt_fils(sm->wpa_key_mgmt)) { wpa_printf(MSG_DEBUG, "FILS: Not a FILS AKM - reject association"); return NULL; } /* Verify Session element */ ie = ies; end = ((const u8 *) ie) + ies_len; while (ie + 1 < end) { if (ie + 2 + ie[1] > end) break; if (ie[0] == WLAN_EID_EXTENSION && ie[1] >= 1 + FILS_SESSION_LEN && ie[2] == WLAN_EID_EXT_FILS_SESSION) { session = ie; break; } ie += 2 + ie[1]; } if (!session) { wpa_printf(MSG_DEBUG, "FILS: %s: Could not find FILS Session element in Assoc Req - reject", __func__); return NULL; } if (!fils_session) { wpa_printf(MSG_DEBUG, "FILS: %s: Could not find FILS Session element in STA entry - reject", __func__); return NULL; } if (os_memcmp(fils_session, session + 3, FILS_SESSION_LEN) != 0) { wpa_printf(MSG_DEBUG, "FILS: Session mismatch"); wpa_hexdump(MSG_DEBUG, "FILS: Expected FILS Session", fils_session, FILS_SESSION_LEN); wpa_hexdump(MSG_DEBUG, "FILS: Received FILS Session", session + 3, FILS_SESSION_LEN); return NULL; } return session; } int wpa_fils_validate_key_confirm(struct wpa_state_machine *sm, const u8 *ies, size_t ies_len) { struct ieee802_11_elems elems; if (ieee802_11_parse_elems(ies, ies_len, &elems, 1) == ParseFailed) { wpa_printf(MSG_DEBUG, "FILS: Failed to parse decrypted elements"); return -1; } if (!elems.fils_session) { wpa_printf(MSG_DEBUG, "FILS: No FILS Session element"); return -1; } if (!elems.fils_key_confirm) { wpa_printf(MSG_DEBUG, "FILS: No FILS Key Confirm element"); return -1; } if (elems.fils_key_confirm_len != sm->fils_key_auth_len) { wpa_printf(MSG_DEBUG, "FILS: Unexpected Key-Auth length %d (expected %d)", elems.fils_key_confirm_len, (int) sm->fils_key_auth_len); return -1; } if (os_memcmp(elems.fils_key_confirm, sm->fils_key_auth_sta, sm->fils_key_auth_len) != 0) { wpa_printf(MSG_DEBUG, "FILS: Key-Auth mismatch"); wpa_hexdump(MSG_DEBUG, "FILS: Received Key-Auth", elems.fils_key_confirm, elems.fils_key_confirm_len); wpa_hexdump(MSG_DEBUG, "FILS: Expected Key-Auth", sm->fils_key_auth_sta, sm->fils_key_auth_len); return -1; } return 0; } int fils_decrypt_assoc(struct wpa_state_machine *sm, const u8 *fils_session, const struct ieee80211_mgmt *mgmt, size_t frame_len, u8 *pos, size_t left) { u16 fc, stype; const u8 *end, *ie_start, *ie, *session, *crypt; const u8 *aad[5]; size_t aad_len[5]; if (!sm || !sm->PTK_valid) { wpa_printf(MSG_DEBUG, "FILS: No KEK to decrypt Assocication Request frame"); return -1; } if (!wpa_key_mgmt_fils(sm->wpa_key_mgmt)) { wpa_printf(MSG_DEBUG, "FILS: Not a FILS AKM - reject association"); return -1; } end = ((const u8 *) mgmt) + frame_len; fc = le_to_host16(mgmt->frame_control); stype = WLAN_FC_GET_STYPE(fc); if (stype == WLAN_FC_STYPE_REASSOC_REQ) ie_start = mgmt->u.reassoc_req.variable; else ie_start = mgmt->u.assoc_req.variable; ie = ie_start; /* * Find FILS Session element which is the last unencrypted element in * the frame. */ session = wpa_fils_validate_fils_session(sm, ie, end - ie, fils_session); if (!session) { wpa_printf(MSG_DEBUG, "FILS: Session validation failed"); return -1; } crypt = session + 2 + session[1]; if (end - crypt < AES_BLOCK_SIZE) { wpa_printf(MSG_DEBUG, "FILS: Too short frame to include AES-SIV data"); return -1; } /* AES-SIV AAD vectors */ /* The STA's MAC address */ aad[0] = mgmt->sa; aad_len[0] = ETH_ALEN; /* The AP's BSSID */ aad[1] = mgmt->da; aad_len[1] = ETH_ALEN; /* The STA's nonce */ aad[2] = sm->SNonce; aad_len[2] = FILS_NONCE_LEN; /* The AP's nonce */ aad[3] = sm->ANonce; aad_len[3] = FILS_NONCE_LEN; /* * The (Re)Association Request frame from the Capability Information * field to the FILS Session element (both inclusive). */ aad[4] = (const u8 *) &mgmt->u.assoc_req.capab_info; aad_len[4] = crypt - aad[4]; if (aes_siv_decrypt(sm->PTK.kek, sm->PTK.kek_len, crypt, end - crypt, 5, aad, aad_len, pos + (crypt - ie_start)) < 0) { wpa_printf(MSG_DEBUG, "FILS: Invalid AES-SIV data in the frame"); return -1; } wpa_hexdump(MSG_DEBUG, "FILS: Decrypted Association Request elements", pos, left - AES_BLOCK_SIZE); if (wpa_fils_validate_key_confirm(sm, pos, left - AES_BLOCK_SIZE) < 0) { wpa_printf(MSG_DEBUG, "FILS: Key Confirm validation failed"); return -1; } return left - AES_BLOCK_SIZE; } int fils_encrypt_assoc(struct wpa_state_machine *sm, u8 *buf, size_t current_len, size_t max_len, const struct wpabuf *hlp) { u8 *end = buf + max_len; u8 *pos = buf + current_len; struct ieee80211_mgmt *mgmt; struct wpabuf *plain; const u8 *aad[5]; size_t aad_len[5]; if (!sm || !sm->PTK_valid) return -1; wpa_hexdump(MSG_DEBUG, "FILS: Association Response frame before FILS processing", buf, current_len); mgmt = (struct ieee80211_mgmt *) buf; /* AES-SIV AAD vectors */ /* The AP's BSSID */ aad[0] = mgmt->sa; aad_len[0] = ETH_ALEN; /* The STA's MAC address */ aad[1] = mgmt->da; aad_len[1] = ETH_ALEN; /* The AP's nonce */ aad[2] = sm->ANonce; aad_len[2] = FILS_NONCE_LEN; /* The STA's nonce */ aad[3] = sm->SNonce; aad_len[3] = FILS_NONCE_LEN; /* * The (Re)Association Response frame from the Capability Information * field (the same offset in both Association and Reassociation * Response frames) to the FILS Session element (both inclusive). */ aad[4] = (const u8 *) &mgmt->u.assoc_resp.capab_info; aad_len[4] = pos - aad[4]; /* The following elements will be encrypted with AES-SIV */ plain = fils_prepare_plainbuf(sm, hlp); if (!plain) { wpa_printf(MSG_DEBUG, "FILS: Plain buffer prep failed"); return -1; } if (pos + wpabuf_len(plain) + AES_BLOCK_SIZE > end) { wpa_printf(MSG_DEBUG, "FILS: Not enough room for FILS elements"); wpabuf_free(plain); return -1; } wpa_hexdump_buf_key(MSG_DEBUG, "FILS: Association Response plaintext", plain); if (aes_siv_encrypt(sm->PTK.kek, sm->PTK.kek_len, wpabuf_head(plain), wpabuf_len(plain), 5, aad, aad_len, pos) < 0) { wpabuf_free(plain); return -1; } wpa_hexdump(MSG_DEBUG, "FILS: Encrypted Association Response elements", pos, AES_BLOCK_SIZE + wpabuf_len(plain)); current_len += wpabuf_len(plain) + AES_BLOCK_SIZE; wpabuf_free(plain); sm->fils_completed = 1; return current_len; } static struct wpabuf * fils_prepare_plainbuf(struct wpa_state_machine *sm, const struct wpabuf *hlp) { struct wpabuf *plain; u8 *len, *tmp, *tmp2; u8 hdr[2]; u8 *gtk, dummy_gtk[32]; size_t gtk_len; struct wpa_group *gsm; plain = wpabuf_alloc(1000); if (!plain) return NULL; /* TODO: FILS Public Key */ /* FILS Key Confirmation */ wpabuf_put_u8(plain, WLAN_EID_EXTENSION); /* Element ID */ wpabuf_put_u8(plain, 1 + sm->fils_key_auth_len); /* Length */ /* Element ID Extension */ wpabuf_put_u8(plain, WLAN_EID_EXT_FILS_KEY_CONFIRM); wpabuf_put_data(plain, sm->fils_key_auth_ap, sm->fils_key_auth_len); /* FILS HLP Container */ if (hlp) wpabuf_put_buf(plain, hlp); /* TODO: FILS IP Address Assignment */ /* Key Delivery */ gsm = sm->group; wpabuf_put_u8(plain, WLAN_EID_EXTENSION); /* Element ID */ len = wpabuf_put(plain, 1); wpabuf_put_u8(plain, WLAN_EID_EXT_KEY_DELIVERY); wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, wpabuf_put(plain, WPA_KEY_RSC_LEN)); /* GTK KDE */ gtk = gsm->GTK[gsm->GN - 1]; gtk_len = gsm->GTK_len; if (sm->wpa_auth->conf.disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) { /* * Provide unique random GTK to each STA to prevent use * of GTK in the BSS. */ if (random_get_bytes(dummy_gtk, gtk_len) < 0) { wpabuf_free(plain); return NULL; } gtk = dummy_gtk; } hdr[0] = gsm->GN & 0x03; hdr[1] = 0; tmp = wpabuf_put(plain, 0); tmp2 = wpa_add_kde(tmp, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gtk_len); wpabuf_put(plain, tmp2 - tmp); /* IGTK KDE */ tmp = wpabuf_put(plain, 0); tmp2 = ieee80211w_kde_add(sm, tmp); wpabuf_put(plain, tmp2 - tmp); *len = (u8 *) wpabuf_put(plain, 0) - len - 1; return plain; } int fils_set_tk(struct wpa_state_machine *sm) { enum wpa_alg alg; int klen; if (!sm || !sm->PTK_valid) { wpa_printf(MSG_DEBUG, "FILS: No valid PTK available to set TK"); return -1; } if (sm->tk_already_set) { wpa_printf(MSG_DEBUG, "FILS: TK already set to the driver"); return -1; } alg = wpa_cipher_to_alg(sm->pairwise); klen = wpa_cipher_key_len(sm->pairwise); wpa_printf(MSG_DEBUG, "FILS: Configure TK to the driver"); if (wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr, 0, sm->PTK.tk, klen)) { wpa_printf(MSG_DEBUG, "FILS: Failed to set TK to the driver"); return -1; } sm->tk_already_set = TRUE; return 0; } u8 * hostapd_eid_assoc_fils_session(struct wpa_state_machine *sm, u8 *buf, const u8 *fils_session, struct wpabuf *hlp) { struct wpabuf *plain; u8 *pos = buf; /* FILS Session */ *pos++ = WLAN_EID_EXTENSION; /* Element ID */ *pos++ = 1 + FILS_SESSION_LEN; /* Length */ *pos++ = WLAN_EID_EXT_FILS_SESSION; /* Element ID Extension */ os_memcpy(pos, fils_session, FILS_SESSION_LEN); pos += FILS_SESSION_LEN; plain = fils_prepare_plainbuf(sm, hlp); if (!plain) { wpa_printf(MSG_DEBUG, "FILS: Plain buffer prep failed"); return NULL; } os_memcpy(pos, wpabuf_head(plain), wpabuf_len(plain)); pos += wpabuf_len(plain); wpa_printf(MSG_DEBUG, "%s: plain buf_len: %u", __func__, (unsigned int) wpabuf_len(plain)); wpabuf_free(plain); sm->fils_completed = 1; return pos; } #endif /* CONFIG_FILS */ #ifdef CONFIG_OCV int get_sta_tx_parameters(struct wpa_state_machine *sm, int ap_max_chanwidth, int ap_seg1_idx, int *bandwidth, int *seg1_idx) { struct wpa_authenticator *wpa_auth = sm->wpa_auth; if (!wpa_auth->cb->get_sta_tx_params) return -1; return wpa_auth->cb->get_sta_tx_params(wpa_auth->cb_ctx, sm->addr, ap_max_chanwidth, ap_seg1_idx, bandwidth, seg1_idx); } #endif /* CONFIG_OCV */ SM_STATE(WPA_PTK, PTKCALCNEGOTIATING) { struct wpa_authenticator *wpa_auth = sm->wpa_auth; struct wpa_ptk PTK; int ok = 0, psk_found = 0; const u8 *pmk = NULL; size_t pmk_len; int ft; const u8 *eapol_key_ie, *key_data, *mic; u16 key_data_length; size_t mic_len, eapol_key_ie_len; struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; struct wpa_eapol_ie_parse kde; SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING, wpa_ptk); sm->EAPOLKeyReceived = FALSE; sm->update_snonce = FALSE; os_memset(&PTK, 0, sizeof(PTK)); mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len); /* WPA with IEEE 802.1X: use the derived PMK from EAP * WPA-PSK: iterate through possible PSKs and select the one matching * the packet */ for (;;) { if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) && !wpa_key_mgmt_sae(sm->wpa_key_mgmt)) { pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, sm->p2p_dev_addr, pmk, &pmk_len); if (pmk == NULL) break; psk_found = 1; #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft_psk(sm->wpa_key_mgmt)) { os_memcpy(sm->xxkey, pmk, pmk_len); sm->xxkey_len = pmk_len; } #endif /* CONFIG_IEEE80211R_AP */ } else { pmk = sm->PMK; pmk_len = sm->pmk_len; } if (wpa_derive_ptk(sm, sm->SNonce, pmk, pmk_len, &PTK) < 0) break; if (mic_len && wpa_verify_key_mic(sm->wpa_key_mgmt, pmk_len, &PTK, sm->last_rx_eapol_key, sm->last_rx_eapol_key_len) == 0) { ok = 1; break; } #ifdef CONFIG_FILS if (!mic_len && wpa_aead_decrypt(sm, &PTK, sm->last_rx_eapol_key, sm->last_rx_eapol_key_len, NULL) == 0) { ok = 1; break; } #endif /* CONFIG_FILS */ if (!wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) || wpa_key_mgmt_sae(sm->wpa_key_mgmt)) break; } if (!ok) { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "invalid MIC in msg 2/4 of 4-Way Handshake"); if (psk_found) wpa_auth_psk_failure_report(sm->wpa_auth, sm->addr); return; } /* * Note: last_rx_eapol_key length fields have already been validated in * wpa_receive(). */ hdr = (struct ieee802_1x_hdr *) sm->last_rx_eapol_key; key = (struct wpa_eapol_key *) (hdr + 1); mic = (u8 *) (key + 1); key_data = mic + mic_len + 2; key_data_length = WPA_GET_BE16(mic + mic_len); if (key_data_length > sm->last_rx_eapol_key_len - sizeof(*hdr) - sizeof(*key) - mic_len - 2) return; if (wpa_parse_kde_ies(key_data, key_data_length, &kde) < 0) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key msg 2/4 with invalid Key Data contents"); return; } if (kde.rsn_ie) { eapol_key_ie = kde.rsn_ie; eapol_key_ie_len = kde.rsn_ie_len; } else if (kde.osen) { eapol_key_ie = kde.osen; eapol_key_ie_len = kde.osen_len; } else { eapol_key_ie = kde.wpa_ie; eapol_key_ie_len = kde.wpa_ie_len; } ft = sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_ft(sm->wpa_key_mgmt); if (sm->wpa_ie == NULL || wpa_compare_rsn_ie(ft, sm->wpa_ie, sm->wpa_ie_len, eapol_key_ie, eapol_key_ie_len)) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "WPA IE from (Re)AssocReq did not match with msg 2/4"); if (sm->wpa_ie) { wpa_hexdump(MSG_DEBUG, "WPA IE in AssocReq", sm->wpa_ie, sm->wpa_ie_len); } wpa_hexdump(MSG_DEBUG, "WPA IE in msg 2/4", eapol_key_ie, eapol_key_ie_len); /* MLME-DEAUTHENTICATE.request */ wpa_sta_disconnect(wpa_auth, sm->addr, WLAN_REASON_PREV_AUTH_NOT_VALID); return; } #ifdef CONFIG_OCV if (wpa_auth_uses_ocv(sm)) { struct wpa_channel_info ci; int tx_chanwidth; int tx_seg1_idx; if (wpa_channel_info(wpa_auth, &ci) != 0) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "Failed to get channel info to validate received OCI in EAPOL-Key 2/4"); return; } if (get_sta_tx_parameters(sm, channel_width_to_int(ci.chanwidth), ci.seg1_idx, &tx_chanwidth, &tx_seg1_idx) < 0) return; if (ocv_verify_tx_params(kde.oci, kde.oci_len, &ci, tx_chanwidth, tx_seg1_idx) != 0) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, ocv_errorstr); return; } } #endif /* CONFIG_OCV */ #ifdef CONFIG_IEEE80211R_AP if (ft && ft_check_msg_2_of_4(wpa_auth, sm, &kde) < 0) { wpa_sta_disconnect(wpa_auth, sm->addr, WLAN_REASON_PREV_AUTH_NOT_VALID); return; } #endif /* CONFIG_IEEE80211R_AP */ #ifdef CONFIG_P2P if (kde.ip_addr_req && kde.ip_addr_req[0] && wpa_auth->ip_pool && WPA_GET_BE32(sm->ip_addr) == 0) { int idx; wpa_printf(MSG_DEBUG, "P2P: IP address requested in EAPOL-Key exchange"); idx = bitfield_get_first_zero(wpa_auth->ip_pool); if (idx >= 0) { u32 start = WPA_GET_BE32(wpa_auth->conf.ip_addr_start); bitfield_set(wpa_auth->ip_pool, idx); WPA_PUT_BE32(sm->ip_addr, start + idx); wpa_printf(MSG_DEBUG, "P2P: Assigned IP address %u.%u.%u.%u to " MACSTR, sm->ip_addr[0], sm->ip_addr[1], sm->ip_addr[2], sm->ip_addr[3], MAC2STR(sm->addr)); } } #endif /* CONFIG_P2P */ #ifdef CONFIG_IEEE80211R_AP if (sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { /* * Verify that PMKR1Name from EAPOL-Key message 2/4 matches * with the value we derived. */ if (os_memcmp_const(sm->sup_pmk_r1_name, sm->pmk_r1_name, WPA_PMK_NAME_LEN) != 0) { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "PMKR1Name mismatch in FT 4-way " "handshake"); wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from " "Supplicant", sm->sup_pmk_r1_name, WPA_PMK_NAME_LEN); wpa_hexdump(MSG_DEBUG, "FT: Derived PMKR1Name", sm->pmk_r1_name, WPA_PMK_NAME_LEN); return; } } #endif /* CONFIG_IEEE80211R_AP */ sm->pending_1_of_4_timeout = 0; eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm); if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) { /* PSK may have changed from the previous choice, so update * state machine data based on whatever PSK was selected here. */ os_memcpy(sm->PMK, pmk, PMK_LEN); sm->pmk_len = PMK_LEN; } sm->MICVerified = TRUE; os_memcpy(&sm->PTK, &PTK, sizeof(PTK)); sm->PTK_valid = TRUE; } SM_STATE(WPA_PTK, PTKCALCNEGOTIATING2) { SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING2, wpa_ptk); sm->TimeoutCtr = 0; } #ifdef CONFIG_IEEE80211W static int ieee80211w_kde_len(struct wpa_state_machine *sm) { if (sm->mgmt_frame_prot) { size_t len; len = wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher); return 2 + RSN_SELECTOR_LEN + WPA_IGTK_KDE_PREFIX_LEN + len; } return 0; } static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos) { struct wpa_igtk_kde igtk; struct wpa_group *gsm = sm->group; u8 rsc[WPA_KEY_RSC_LEN]; size_t len = wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher); if (!sm->mgmt_frame_prot) return pos; igtk.keyid[0] = gsm->GN_igtk; igtk.keyid[1] = 0; if (gsm->wpa_group_state != WPA_GROUP_SETKEYSDONE || wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, rsc) < 0) os_memset(igtk.pn, 0, sizeof(igtk.pn)); else os_memcpy(igtk.pn, rsc, sizeof(igtk.pn)); os_memcpy(igtk.igtk, gsm->IGTK[gsm->GN_igtk - 4], len); if (sm->wpa_auth->conf.disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) { /* * Provide unique random IGTK to each STA to prevent use of * IGTK in the BSS. */ if (random_get_bytes(igtk.igtk, len) < 0) return pos; } pos = wpa_add_kde(pos, RSN_KEY_DATA_IGTK, (const u8 *) &igtk, WPA_IGTK_KDE_PREFIX_LEN + len, NULL, 0); return pos; } #else /* CONFIG_IEEE80211W */ static int ieee80211w_kde_len(struct wpa_state_machine *sm) { return 0; } static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos) { return pos; } #endif /* CONFIG_IEEE80211W */ static int ocv_oci_len(struct wpa_state_machine *sm) { #ifdef CONFIG_OCV if (wpa_auth_uses_ocv(sm)) return OCV_OCI_KDE_LEN; #endif /* CONFIG_OCV */ return 0; } static int ocv_oci_add(struct wpa_state_machine *sm, u8 **argpos) { #ifdef CONFIG_OCV struct wpa_channel_info ci; if (!wpa_auth_uses_ocv(sm)) return 0; if (wpa_channel_info(sm->wpa_auth, &ci) != 0) { wpa_printf(MSG_WARNING, "Failed to get channel info for OCI element"); return -1; } return ocv_insert_oci_kde(&ci, argpos); #else /* CONFIG_OCV */ return 0; #endif /* CONFIG_OCV */ } SM_STATE(WPA_PTK, PTKINITNEGOTIATING) { u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde, *pos, dummy_gtk[32]; size_t gtk_len, kde_len; struct wpa_group *gsm = sm->group; u8 *wpa_ie; int wpa_ie_len, secure, keyidx, encr = 0; SM_ENTRY_MA(WPA_PTK, PTKINITNEGOTIATING, wpa_ptk); sm->TimeoutEvt = FALSE; sm->TimeoutCtr++; if (sm->wpa_auth->conf.wpa_disable_eapol_key_retries && sm->TimeoutCtr > 1) { /* Do not allow retransmission of EAPOL-Key msg 3/4 */ return; } if (sm->TimeoutCtr > sm->wpa_auth->conf.wpa_pairwise_update_count) { /* No point in sending the EAPOL-Key - we will disconnect * immediately following this. */ return; } /* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, [MDIE], GTK[GN], IGTK, [FTIE], [TIE * 2]) */ os_memset(rsc, 0, WPA_KEY_RSC_LEN); wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc); /* If FT is used, wpa_auth->wpa_ie includes both RSNIE and MDIE */ wpa_ie = sm->wpa_auth->wpa_ie; wpa_ie_len = sm->wpa_auth->wpa_ie_len; if (sm->wpa == WPA_VERSION_WPA && (sm->wpa_auth->conf.wpa & WPA_PROTO_RSN) && wpa_ie_len > wpa_ie[1] + 2 && wpa_ie[0] == WLAN_EID_RSN) { /* WPA-only STA, remove RSN IE and possible MDIE */ wpa_ie = wpa_ie + wpa_ie[1] + 2; if (wpa_ie[0] == WLAN_EID_MOBILITY_DOMAIN) wpa_ie = wpa_ie + wpa_ie[1] + 2; wpa_ie_len = wpa_ie[1] + 2; } wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "sending 3/4 msg of 4-Way Handshake"); if (sm->wpa == WPA_VERSION_WPA2) { /* WPA2 send GTK in the 4-way handshake */ secure = 1; gtk = gsm->GTK[gsm->GN - 1]; gtk_len = gsm->GTK_len; if (sm->wpa_auth->conf.disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) { /* * Provide unique random GTK to each STA to prevent use * of GTK in the BSS. */ if (random_get_bytes(dummy_gtk, gtk_len) < 0) return; gtk = dummy_gtk; } keyidx = gsm->GN; _rsc = rsc; encr = 1; } else { /* WPA does not include GTK in msg 3/4 */ secure = 0; gtk = NULL; gtk_len = 0; keyidx = 0; _rsc = NULL; if (sm->rx_eapol_key_secure) { /* * It looks like Windows 7 supplicant tries to use * Secure bit in msg 2/4 after having reported Michael * MIC failure and it then rejects the 4-way handshake * if msg 3/4 does not set Secure bit. Work around this * by setting the Secure bit here even in the case of * WPA if the supplicant used it first. */ wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "STA used Secure bit in WPA msg 2/4 - " "set Secure for 3/4 as workaround"); secure = 1; } } kde_len = wpa_ie_len + ieee80211w_kde_len(sm) + ocv_oci_len(sm); if (gtk) kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len; #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { kde_len += 2 + PMKID_LEN; /* PMKR1Name into RSN IE */ kde_len += 300; /* FTIE + 2 * TIE */ } #endif /* CONFIG_IEEE80211R_AP */ #ifdef CONFIG_P2P if (WPA_GET_BE32(sm->ip_addr) > 0) kde_len += 2 + RSN_SELECTOR_LEN + 3 * 4; #endif /* CONFIG_P2P */ kde = os_malloc(kde_len); if (kde == NULL) return; pos = kde; os_memcpy(pos, wpa_ie, wpa_ie_len); pos += wpa_ie_len; #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { int res; size_t elen; elen = pos - kde; res = wpa_insert_pmkid(kde, &elen, sm->pmk_r1_name); if (res < 0) { wpa_printf(MSG_ERROR, "FT: Failed to insert " "PMKR1Name into RSN IE in EAPOL-Key data"); os_free(kde); return; } pos -= wpa_ie_len; pos += elen; } #endif /* CONFIG_IEEE80211R_AP */ if (gtk) { u8 hdr[2]; hdr[0] = keyidx & 0x03; hdr[1] = 0; pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gtk_len); } pos = ieee80211w_kde_add(sm, pos); if (ocv_oci_add(sm, &pos) < 0) { os_free(kde); return; } #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { int res; struct wpa_auth_config *conf; conf = &sm->wpa_auth->conf; if (sm->assoc_resp_ftie && kde + kde_len - pos >= 2 + sm->assoc_resp_ftie[1]) { os_memcpy(pos, sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]); res = 2 + sm->assoc_resp_ftie[1]; } else { int use_sha384 = wpa_key_mgmt_sha384(sm->wpa_key_mgmt); res = wpa_write_ftie(conf, use_sha384, conf->r0_key_holder, conf->r0_key_holder_len, NULL, NULL, pos, kde + kde_len - pos, NULL, 0); } if (res < 0) { wpa_printf(MSG_ERROR, "FT: Failed to insert FTIE " "into EAPOL-Key Key Data"); os_free(kde); return; } pos += res; /* TIE[ReassociationDeadline] (TU) */ *pos++ = WLAN_EID_TIMEOUT_INTERVAL; *pos++ = 5; *pos++ = WLAN_TIMEOUT_REASSOC_DEADLINE; WPA_PUT_LE32(pos, conf->reassociation_deadline); pos += 4; /* TIE[KeyLifetime] (seconds) */ *pos++ = WLAN_EID_TIMEOUT_INTERVAL; *pos++ = 5; *pos++ = WLAN_TIMEOUT_KEY_LIFETIME; WPA_PUT_LE32(pos, conf->r0_key_lifetime); pos += 4; } #endif /* CONFIG_IEEE80211R_AP */ #ifdef CONFIG_P2P if (WPA_GET_BE32(sm->ip_addr) > 0) { u8 addr[3 * 4]; os_memcpy(addr, sm->ip_addr, 4); os_memcpy(addr + 4, sm->wpa_auth->conf.ip_addr_mask, 4); os_memcpy(addr + 8, sm->wpa_auth->conf.ip_addr_go, 4); pos = wpa_add_kde(pos, WFA_KEY_DATA_IP_ADDR_ALLOC, addr, sizeof(addr), NULL, 0); } #endif /* CONFIG_P2P */ wpa_send_eapol(sm->wpa_auth, sm, (secure ? WPA_KEY_INFO_SECURE : 0) | (wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ? WPA_KEY_INFO_MIC : 0) | WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL | WPA_KEY_INFO_KEY_TYPE, _rsc, sm->ANonce, kde, pos - kde, keyidx, encr); os_free(kde); } SM_STATE(WPA_PTK, PTKINITDONE) { SM_ENTRY_MA(WPA_PTK, PTKINITDONE, wpa_ptk); sm->EAPOLKeyReceived = FALSE; if (sm->Pair) { enum wpa_alg alg = wpa_cipher_to_alg(sm->pairwise); int klen = wpa_cipher_key_len(sm->pairwise); if (wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr, 0, sm->PTK.tk, klen)) { wpa_sta_disconnect(sm->wpa_auth, sm->addr, WLAN_REASON_PREV_AUTH_NOT_VALID); return; } /* FIX: MLME-SetProtection.Request(TA, Tx_Rx) */ sm->pairwise_set = TRUE; if (sm->wpa_auth->conf.wpa_ptk_rekey) { eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm); eloop_register_timeout(sm->wpa_auth->conf. wpa_ptk_rekey, 0, wpa_rekey_ptk, sm->wpa_auth, sm); } if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) || sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP || sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE) { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_authorized, 1); } } if (0 /* IBSS == TRUE */) { sm->keycount++; if (sm->keycount == 2) { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 1); } } else { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 1); } wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable, 0); wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyDone, 1); if (sm->wpa == WPA_VERSION_WPA) sm->PInitAKeys = TRUE; else sm->has_GTK = TRUE; wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO, "pairwise key handshake completed (%s)", sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN"); #ifdef CONFIG_IEEE80211R_AP wpa_ft_push_pmk_r1(sm->wpa_auth, sm->addr); #endif /* CONFIG_IEEE80211R_AP */ } SM_STEP(WPA_PTK) { struct wpa_authenticator *wpa_auth = sm->wpa_auth; if (sm->Init) SM_ENTER(WPA_PTK, INITIALIZE); else if (sm->Disconnect /* || FIX: dot11RSNAConfigSALifetime timeout */) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "WPA_PTK: sm->Disconnect"); SM_ENTER(WPA_PTK, DISCONNECT); } else if (sm->DeauthenticationRequest) SM_ENTER(WPA_PTK, DISCONNECTED); else if (sm->AuthenticationRequest) SM_ENTER(WPA_PTK, AUTHENTICATION); else if (sm->ReAuthenticationRequest) SM_ENTER(WPA_PTK, AUTHENTICATION2); else if (sm->PTKRequest) { if (wpa_auth_sm_ptk_update(sm) < 0) SM_ENTER(WPA_PTK, DISCONNECTED); else SM_ENTER(WPA_PTK, PTKSTART); } else switch (sm->wpa_ptk_state) { case WPA_PTK_INITIALIZE: break; case WPA_PTK_DISCONNECT: SM_ENTER(WPA_PTK, DISCONNECTED); break; case WPA_PTK_DISCONNECTED: SM_ENTER(WPA_PTK, INITIALIZE); break; case WPA_PTK_AUTHENTICATION: SM_ENTER(WPA_PTK, AUTHENTICATION2); break; case WPA_PTK_AUTHENTICATION2: if (wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) && wpa_auth_get_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun) > 0) SM_ENTER(WPA_PTK, INITPMK); else if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) || sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE /* FIX: && 802.1X::keyRun */) SM_ENTER(WPA_PTK, INITPSK); else if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP) SM_ENTER(WPA_PTK, INITPMK); break; case WPA_PTK_INITPMK: if (wpa_auth_get_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable) > 0) { SM_ENTER(WPA_PTK, PTKSTART); #ifdef CONFIG_DPP } else if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP && sm->pmksa) { SM_ENTER(WPA_PTK, PTKSTART); #endif /* CONFIG_DPP */ } else { wpa_auth->dot11RSNA4WayHandshakeFailures++; wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO, "INITPMK - keyAvailable = false"); SM_ENTER(WPA_PTK, DISCONNECT); } break; case WPA_PTK_INITPSK: if (wpa_auth_get_psk(sm->wpa_auth, sm->addr, sm->p2p_dev_addr, NULL, NULL)) { SM_ENTER(WPA_PTK, PTKSTART); #ifdef CONFIG_SAE } else if (wpa_auth_uses_sae(sm) && sm->pmksa) { SM_ENTER(WPA_PTK, PTKSTART); #endif /* CONFIG_SAE */ } else { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO, "no PSK configured for the STA"); wpa_auth->dot11RSNA4WayHandshakeFailures++; SM_ENTER(WPA_PTK, DISCONNECT); } break; case WPA_PTK_PTKSTART: if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && sm->EAPOLKeyPairwise) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING); else if (sm->TimeoutCtr > sm->wpa_auth->conf.wpa_pairwise_update_count) { wpa_auth->dot11RSNA4WayHandshakeFailures++; wpa_auth_vlogger( sm->wpa_auth, sm->addr, LOGGER_DEBUG, "PTKSTART: Retry limit %u reached", sm->wpa_auth->conf.wpa_pairwise_update_count); SM_ENTER(WPA_PTK, DISCONNECT); } else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK, PTKSTART); break; case WPA_PTK_PTKCALCNEGOTIATING: if (sm->MICVerified) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING2); else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && sm->EAPOLKeyPairwise) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING); else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK, PTKSTART); break; case WPA_PTK_PTKCALCNEGOTIATING2: SM_ENTER(WPA_PTK, PTKINITNEGOTIATING); break; case WPA_PTK_PTKINITNEGOTIATING: if (sm->update_snonce) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING); else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && sm->EAPOLKeyPairwise && sm->MICVerified) SM_ENTER(WPA_PTK, PTKINITDONE); else if (sm->TimeoutCtr > sm->wpa_auth->conf.wpa_pairwise_update_count || (sm->wpa_auth->conf.wpa_disable_eapol_key_retries && sm->TimeoutCtr > 1)) { wpa_auth->dot11RSNA4WayHandshakeFailures++; wpa_auth_vlogger( sm->wpa_auth, sm->addr, LOGGER_DEBUG, "PTKINITNEGOTIATING: Retry limit %u reached", sm->wpa_auth->conf.wpa_pairwise_update_count); SM_ENTER(WPA_PTK, DISCONNECT); } else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK, PTKINITNEGOTIATING); break; case WPA_PTK_PTKINITDONE: break; } } SM_STATE(WPA_PTK_GROUP, IDLE) { SM_ENTRY_MA(WPA_PTK_GROUP, IDLE, wpa_ptk_group); if (sm->Init) { /* Init flag is not cleared here, so avoid busy * loop by claiming nothing changed. */ sm->changed = FALSE; } sm->GTimeoutCtr = 0; } SM_STATE(WPA_PTK_GROUP, REKEYNEGOTIATING) { u8 rsc[WPA_KEY_RSC_LEN]; struct wpa_group *gsm = sm->group; const u8 *kde; u8 *kde_buf = NULL, *pos, hdr[2]; size_t kde_len; u8 *gtk, dummy_gtk[32]; SM_ENTRY_MA(WPA_PTK_GROUP, REKEYNEGOTIATING, wpa_ptk_group); sm->GTimeoutCtr++; if (sm->wpa_auth->conf.wpa_disable_eapol_key_retries && sm->GTimeoutCtr > 1) { /* Do not allow retransmission of EAPOL-Key group msg 1/2 */ return; } if (sm->GTimeoutCtr > sm->wpa_auth->conf.wpa_group_update_count) { /* No point in sending the EAPOL-Key - we will disconnect * immediately following this. */ return; } if (sm->wpa == WPA_VERSION_WPA) sm->PInitAKeys = FALSE; sm->TimeoutEvt = FALSE; /* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */ os_memset(rsc, 0, WPA_KEY_RSC_LEN); if (gsm->wpa_group_state == WPA_GROUP_SETKEYSDONE) wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc); wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "sending 1/2 msg of Group Key Handshake"); gtk = gsm->GTK[gsm->GN - 1]; if (sm->wpa_auth->conf.disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) { /* * Provide unique random GTK to each STA to prevent use * of GTK in the BSS. */ if (random_get_bytes(dummy_gtk, gsm->GTK_len) < 0) return; gtk = dummy_gtk; } if (sm->wpa == WPA_VERSION_WPA2) { kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len + ieee80211w_kde_len(sm) + ocv_oci_len(sm); kde_buf = os_malloc(kde_len); if (kde_buf == NULL) return; kde = pos = kde_buf; hdr[0] = gsm->GN & 0x03; hdr[1] = 0; pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gsm->GTK_len); pos = ieee80211w_kde_add(sm, pos); if (ocv_oci_add(sm, &pos) < 0) { os_free(kde_buf); return; } kde_len = pos - kde; } else { kde = gtk; kde_len = gsm->GTK_len; } wpa_send_eapol(sm->wpa_auth, sm, WPA_KEY_INFO_SECURE | (wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ? WPA_KEY_INFO_MIC : 0) | WPA_KEY_INFO_ACK | (!sm->Pair ? WPA_KEY_INFO_INSTALL : 0), rsc, NULL, kde, kde_len, gsm->GN, 1); os_free(kde_buf); } SM_STATE(WPA_PTK_GROUP, REKEYESTABLISHED) { #ifdef CONFIG_OCV struct wpa_authenticator *wpa_auth = sm->wpa_auth; const u8 *key_data, *mic; struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; struct wpa_eapol_ie_parse kde; size_t mic_len; u16 key_data_length; #endif /* CONFIG_OCV */ SM_ENTRY_MA(WPA_PTK_GROUP, REKEYESTABLISHED, wpa_ptk_group); sm->EAPOLKeyReceived = FALSE; #ifdef CONFIG_OCV mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len); /* * Note: last_rx_eapol_key length fields have already been validated in * wpa_receive(). */ hdr = (struct ieee802_1x_hdr *) sm->last_rx_eapol_key; key = (struct wpa_eapol_key *) (hdr + 1); mic = (u8 *) (key + 1); key_data = mic + mic_len + 2; key_data_length = WPA_GET_BE16(mic + mic_len); if (key_data_length > sm->last_rx_eapol_key_len - sizeof(*hdr) - sizeof(*key) - mic_len - 2) return; if (wpa_parse_kde_ies(key_data, key_data_length, &kde) < 0) { wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO, "received EAPOL-Key group msg 2/2 with invalid Key Data contents"); return; } if (wpa_auth_uses_ocv(sm)) { struct wpa_channel_info ci; int tx_chanwidth; int tx_seg1_idx; if (wpa_channel_info(wpa_auth, &ci) != 0) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, "Failed to get channel info to validate received OCI in EAPOL-Key group 1/2"); return; } if (get_sta_tx_parameters(sm, channel_width_to_int(ci.chanwidth), ci.seg1_idx, &tx_chanwidth, &tx_seg1_idx) < 0) return; if (ocv_verify_tx_params(kde.oci, kde.oci_len, &ci, tx_chanwidth, tx_seg1_idx) != 0) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO, ocv_errorstr); return; } } #endif /* CONFIG_OCV */ if (sm->GUpdateStationKeys) sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; sm->GTimeoutCtr = 0; /* FIX: MLME.SetProtection.Request(TA, Tx_Rx) */ wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO, "group key handshake completed (%s)", sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN"); sm->has_GTK = TRUE; } SM_STATE(WPA_PTK_GROUP, KEYERROR) { SM_ENTRY_MA(WPA_PTK_GROUP, KEYERROR, wpa_ptk_group); if (sm->GUpdateStationKeys) sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; sm->Disconnect = TRUE; wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO, "group key handshake failed (%s) after %u tries", sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN", sm->wpa_auth->conf.wpa_group_update_count); } SM_STEP(WPA_PTK_GROUP) { if (sm->Init || sm->PtkGroupInit) { SM_ENTER(WPA_PTK_GROUP, IDLE); sm->PtkGroupInit = FALSE; } else switch (sm->wpa_ptk_group_state) { case WPA_PTK_GROUP_IDLE: if (sm->GUpdateStationKeys || (sm->wpa == WPA_VERSION_WPA && sm->PInitAKeys)) SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING); break; case WPA_PTK_GROUP_REKEYNEGOTIATING: if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && !sm->EAPOLKeyPairwise && sm->MICVerified) SM_ENTER(WPA_PTK_GROUP, REKEYESTABLISHED); else if (sm->GTimeoutCtr > sm->wpa_auth->conf.wpa_group_update_count || (sm->wpa_auth->conf.wpa_disable_eapol_key_retries && sm->GTimeoutCtr > 1)) SM_ENTER(WPA_PTK_GROUP, KEYERROR); else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING); break; case WPA_PTK_GROUP_KEYERROR: SM_ENTER(WPA_PTK_GROUP, IDLE); break; case WPA_PTK_GROUP_REKEYESTABLISHED: SM_ENTER(WPA_PTK_GROUP, IDLE); break; } } static int wpa_gtk_update(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { int ret = 0; os_memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN); inc_byte_array(group->Counter, WPA_NONCE_LEN); if (wpa_gmk_to_gtk(group->GMK, "Group key expansion", wpa_auth->addr, group->GNonce, group->GTK[group->GN - 1], group->GTK_len) < 0) ret = -1; wpa_hexdump_key(MSG_DEBUG, "GTK", group->GTK[group->GN - 1], group->GTK_len); #ifdef CONFIG_IEEE80211W if (wpa_auth->conf.ieee80211w != NO_MGMT_FRAME_PROTECTION) { size_t len; len = wpa_cipher_key_len(wpa_auth->conf.group_mgmt_cipher); os_memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN); inc_byte_array(group->Counter, WPA_NONCE_LEN); if (wpa_gmk_to_gtk(group->GMK, "IGTK key expansion", wpa_auth->addr, group->GNonce, group->IGTK[group->GN_igtk - 4], len) < 0) ret = -1; wpa_hexdump_key(MSG_DEBUG, "IGTK", group->IGTK[group->GN_igtk - 4], len); } #endif /* CONFIG_IEEE80211W */ return ret; } static void wpa_group_gtk_init(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { wpa_printf(MSG_DEBUG, "WPA: group state machine entering state " "GTK_INIT (VLAN-ID %d)", group->vlan_id); group->changed = FALSE; /* GInit is not cleared here; avoid loop */ group->wpa_group_state = WPA_GROUP_GTK_INIT; /* GTK[0..N] = 0 */ os_memset(group->GTK, 0, sizeof(group->GTK)); group->GN = 1; group->GM = 2; #ifdef CONFIG_IEEE80211W group->GN_igtk = 4; group->GM_igtk = 5; #endif /* CONFIG_IEEE80211W */ /* GTK[GN] = CalcGTK() */ wpa_gtk_update(wpa_auth, group); } static int wpa_group_update_sta(struct wpa_state_machine *sm, void *ctx) { if (ctx != NULL && ctx != sm->group) return 0; if (sm->wpa_ptk_state != WPA_PTK_PTKINITDONE) { wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "Not in PTKINITDONE; skip Group Key update"); sm->GUpdateStationKeys = FALSE; return 0; } if (sm->GUpdateStationKeys) { /* * This should not really happen, so add a debug log entry. * Since we clear the GKeyDoneStations before the loop, the * station needs to be counted here anyway. */ wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "GUpdateStationKeys was already set when " "marking station for GTK rekeying"); } /* Do not rekey GTK/IGTK when STA is in WNM-Sleep Mode */ if (sm->is_wnmsleep) return 0; sm->group->GKeyDoneStations++; sm->GUpdateStationKeys = TRUE; wpa_sm_step(sm); return 0; } #ifdef CONFIG_WNM_AP /* update GTK when exiting WNM-Sleep Mode */ void wpa_wnmsleep_rekey_gtk(struct wpa_state_machine *sm) { if (sm == NULL || sm->is_wnmsleep) return; wpa_group_update_sta(sm, NULL); } void wpa_set_wnmsleep(struct wpa_state_machine *sm, int flag) { if (sm) sm->is_wnmsleep = !!flag; } int wpa_wnmsleep_gtk_subelem(struct wpa_state_machine *sm, u8 *pos) { struct wpa_group *gsm = sm->group; u8 *start = pos; /* * GTK subelement: * Sub-elem ID[1] | Length[1] | Key Info[2] | Key Length[1] | RSC[8] | * Key[5..32] */ *pos++ = WNM_SLEEP_SUBELEM_GTK; *pos++ = 11 + gsm->GTK_len; /* Key ID in B0-B1 of Key Info */ WPA_PUT_LE16(pos, gsm->GN & 0x03); pos += 2; *pos++ = gsm->GTK_len; if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, pos) != 0) return 0; pos += 8; os_memcpy(pos, gsm->GTK[gsm->GN - 1], gsm->GTK_len); pos += gsm->GTK_len; wpa_printf(MSG_DEBUG, "WNM: GTK Key ID %u in WNM-Sleep Mode exit", gsm->GN); wpa_hexdump_key(MSG_DEBUG, "WNM: GTK in WNM-Sleep Mode exit", gsm->GTK[gsm->GN - 1], gsm->GTK_len); return pos - start; } #ifdef CONFIG_IEEE80211W int wpa_wnmsleep_igtk_subelem(struct wpa_state_machine *sm, u8 *pos) { struct wpa_group *gsm = sm->group; u8 *start = pos; size_t len = wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher); /* * IGTK subelement: * Sub-elem ID[1] | Length[1] | KeyID[2] | PN[6] | Key[16] */ *pos++ = WNM_SLEEP_SUBELEM_IGTK; *pos++ = 2 + 6 + len; WPA_PUT_LE16(pos, gsm->GN_igtk); pos += 2; if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, pos) != 0) return 0; pos += 6; os_memcpy(pos, gsm->IGTK[gsm->GN_igtk - 4], len); pos += len; wpa_printf(MSG_DEBUG, "WNM: IGTK Key ID %u in WNM-Sleep Mode exit", gsm->GN_igtk); wpa_hexdump_key(MSG_DEBUG, "WNM: IGTK in WNM-Sleep Mode exit", gsm->IGTK[gsm->GN_igtk - 4], len); return pos - start; } #endif /* CONFIG_IEEE80211W */ #endif /* CONFIG_WNM_AP */ static void wpa_group_setkeys(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { int tmp; wpa_printf(MSG_DEBUG, "WPA: group state machine entering state " "SETKEYS (VLAN-ID %d)", group->vlan_id); group->changed = TRUE; group->wpa_group_state = WPA_GROUP_SETKEYS; group->GTKReKey = FALSE; tmp = group->GM; group->GM = group->GN; group->GN = tmp; #ifdef CONFIG_IEEE80211W tmp = group->GM_igtk; group->GM_igtk = group->GN_igtk; group->GN_igtk = tmp; #endif /* CONFIG_IEEE80211W */ /* "GKeyDoneStations = GNoStations" is done in more robust way by * counting the STAs that are marked with GUpdateStationKeys instead of * including all STAs that could be in not-yet-completed state. */ wpa_gtk_update(wpa_auth, group); if (group->GKeyDoneStations) { wpa_printf(MSG_DEBUG, "wpa_group_setkeys: Unexpected " "GKeyDoneStations=%d when starting new GTK rekey", group->GKeyDoneStations); group->GKeyDoneStations = 0; } wpa_auth_for_each_sta(wpa_auth, wpa_group_update_sta, group); wpa_printf(MSG_DEBUG, "wpa_group_setkeys: GKeyDoneStations=%d", group->GKeyDoneStations); } static int wpa_group_config_group_keys(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { int ret = 0; if (wpa_auth_set_key(wpa_auth, group->vlan_id, wpa_cipher_to_alg(wpa_auth->conf.wpa_group), broadcast_ether_addr, group->GN, group->GTK[group->GN - 1], group->GTK_len) < 0) ret = -1; #ifdef CONFIG_IEEE80211W if (wpa_auth->conf.ieee80211w != NO_MGMT_FRAME_PROTECTION) { enum wpa_alg alg; size_t len; alg = wpa_cipher_to_alg(wpa_auth->conf.group_mgmt_cipher); len = wpa_cipher_key_len(wpa_auth->conf.group_mgmt_cipher); if (ret == 0 && wpa_auth_set_key(wpa_auth, group->vlan_id, alg, broadcast_ether_addr, group->GN_igtk, group->IGTK[group->GN_igtk - 4], len) < 0) ret = -1; } #endif /* CONFIG_IEEE80211W */ return ret; } static int wpa_group_disconnect_cb(struct wpa_state_machine *sm, void *ctx) { if (sm->group == ctx) { wpa_printf(MSG_DEBUG, "WPA: Mark STA " MACSTR " for discconnection due to fatal failure", MAC2STR(sm->addr)); sm->Disconnect = TRUE; } return 0; } static void wpa_group_fatal_failure(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { wpa_printf(MSG_DEBUG, "WPA: group state machine entering state FATAL_FAILURE"); group->changed = TRUE; group->wpa_group_state = WPA_GROUP_FATAL_FAILURE; wpa_auth_for_each_sta(wpa_auth, wpa_group_disconnect_cb, group); } static int wpa_group_setkeysdone(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { wpa_printf(MSG_DEBUG, "WPA: group state machine entering state " "SETKEYSDONE (VLAN-ID %d)", group->vlan_id); group->changed = TRUE; group->wpa_group_state = WPA_GROUP_SETKEYSDONE; if (wpa_group_config_group_keys(wpa_auth, group) < 0) { wpa_group_fatal_failure(wpa_auth, group); return -1; } return 0; } static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { if (group->GInit) { wpa_group_gtk_init(wpa_auth, group); } else if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) { /* Do not allow group operations */ } else if (group->wpa_group_state == WPA_GROUP_GTK_INIT && group->GTKAuthenticator) { wpa_group_setkeysdone(wpa_auth, group); } else if (group->wpa_group_state == WPA_GROUP_SETKEYSDONE && group->GTKReKey) { wpa_group_setkeys(wpa_auth, group); } else if (group->wpa_group_state == WPA_GROUP_SETKEYS) { if (group->GKeyDoneStations == 0) wpa_group_setkeysdone(wpa_auth, group); else if (group->GTKReKey) wpa_group_setkeys(wpa_auth, group); } } static int wpa_sm_step(struct wpa_state_machine *sm) { if (sm == NULL) return 0; if (sm->in_step_loop) { /* This should not happen, but if it does, make sure we do not * end up freeing the state machine too early by exiting the * recursive call. */ wpa_printf(MSG_ERROR, "WPA: wpa_sm_step() called recursively"); return 0; } sm->in_step_loop = 1; do { if (sm->pending_deinit) break; sm->changed = FALSE; sm->wpa_auth->group->changed = FALSE; SM_STEP_RUN(WPA_PTK); if (sm->pending_deinit) break; SM_STEP_RUN(WPA_PTK_GROUP); if (sm->pending_deinit) break; wpa_group_sm_step(sm->wpa_auth, sm->group); } while (sm->changed || sm->wpa_auth->group->changed); sm->in_step_loop = 0; if (sm->pending_deinit) { wpa_printf(MSG_DEBUG, "WPA: Completing pending STA state " "machine deinit for " MACSTR, MAC2STR(sm->addr)); wpa_free_sta_sm(sm); return 1; } return 0; } static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx) { struct wpa_state_machine *sm = eloop_ctx; wpa_sm_step(sm); } void wpa_auth_sm_notify(struct wpa_state_machine *sm) { if (sm == NULL) return; eloop_register_timeout(0, 0, wpa_sm_call_step, sm, NULL); } void wpa_gtk_rekey(struct wpa_authenticator *wpa_auth) { int tmp, i; struct wpa_group *group; if (wpa_auth == NULL) return; group = wpa_auth->group; for (i = 0; i < 2; i++) { tmp = group->GM; group->GM = group->GN; group->GN = tmp; #ifdef CONFIG_IEEE80211W tmp = group->GM_igtk; group->GM_igtk = group->GN_igtk; group->GN_igtk = tmp; #endif /* CONFIG_IEEE80211W */ wpa_gtk_update(wpa_auth, group); wpa_group_config_group_keys(wpa_auth, group); } } static const char * wpa_bool_txt(int val) { return val ? "TRUE" : "FALSE"; } #define RSN_SUITE "%02x-%02x-%02x-%d" #define RSN_SUITE_ARG(s) \ ((s) >> 24) & 0xff, ((s) >> 16) & 0xff, ((s) >> 8) & 0xff, (s) & 0xff int wpa_get_mib(struct wpa_authenticator *wpa_auth, char *buf, size_t buflen) { int len = 0, ret; char pmkid_txt[PMKID_LEN * 2 + 1]; #ifdef CONFIG_RSN_PREAUTH const int preauth = 1; #else /* CONFIG_RSN_PREAUTH */ const int preauth = 0; #endif /* CONFIG_RSN_PREAUTH */ if (wpa_auth == NULL) return len; ret = os_snprintf(buf + len, buflen - len, "dot11RSNAOptionImplemented=TRUE\n" "dot11RSNAPreauthenticationImplemented=%s\n" "dot11RSNAEnabled=%s\n" "dot11RSNAPreauthenticationEnabled=%s\n", wpa_bool_txt(preauth), wpa_bool_txt(wpa_auth->conf.wpa & WPA_PROTO_RSN), wpa_bool_txt(wpa_auth->conf.rsn_preauth)); if (os_snprintf_error(buflen - len, ret)) return len; len += ret; wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt), wpa_auth->dot11RSNAPMKIDUsed, PMKID_LEN); ret = os_snprintf( buf + len, buflen - len, "dot11RSNAConfigVersion=%u\n" "dot11RSNAConfigPairwiseKeysSupported=9999\n" /* FIX: dot11RSNAConfigGroupCipher */ /* FIX: dot11RSNAConfigGroupRekeyMethod */ /* FIX: dot11RSNAConfigGroupRekeyTime */ /* FIX: dot11RSNAConfigGroupRekeyPackets */ "dot11RSNAConfigGroupRekeyStrict=%u\n" "dot11RSNAConfigGroupUpdateCount=%u\n" "dot11RSNAConfigPairwiseUpdateCount=%u\n" "dot11RSNAConfigGroupCipherSize=%u\n" "dot11RSNAConfigPMKLifetime=%u\n" "dot11RSNAConfigPMKReauthThreshold=%u\n" "dot11RSNAConfigNumberOfPTKSAReplayCounters=0\n" "dot11RSNAConfigSATimeout=%u\n" "dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n" "dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n" "dot11RSNAGroupCipherSelected=" RSN_SUITE "\n" "dot11RSNAPMKIDUsed=%s\n" "dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n" "dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n" "dot11RSNAGroupCipherRequested=" RSN_SUITE "\n" "dot11RSNATKIPCounterMeasuresInvoked=%u\n" "dot11RSNA4WayHandshakeFailures=%u\n" "dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n", RSN_VERSION, !!wpa_auth->conf.wpa_strict_rekey, wpa_auth->conf.wpa_group_update_count, wpa_auth->conf.wpa_pairwise_update_count, wpa_cipher_key_len(wpa_auth->conf.wpa_group) * 8, dot11RSNAConfigPMKLifetime, dot11RSNAConfigPMKReauthThreshold, dot11RSNAConfigSATimeout, RSN_SUITE_ARG(wpa_auth->dot11RSNAAuthenticationSuiteSelected), RSN_SUITE_ARG(wpa_auth->dot11RSNAPairwiseCipherSelected), RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherSelected), pmkid_txt, RSN_SUITE_ARG(wpa_auth->dot11RSNAAuthenticationSuiteRequested), RSN_SUITE_ARG(wpa_auth->dot11RSNAPairwiseCipherRequested), RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherRequested), wpa_auth->dot11RSNATKIPCounterMeasuresInvoked, wpa_auth->dot11RSNA4WayHandshakeFailures); if (os_snprintf_error(buflen - len, ret)) return len; len += ret; /* TODO: dot11RSNAConfigPairwiseCiphersTable */ /* TODO: dot11RSNAConfigAuthenticationSuitesTable */ /* Private MIB */ ret = os_snprintf(buf + len, buflen - len, "hostapdWPAGroupState=%d\n", wpa_auth->group->wpa_group_state); if (os_snprintf_error(buflen - len, ret)) return len; len += ret; return len; } int wpa_get_mib_sta(struct wpa_state_machine *sm, char *buf, size_t buflen) { int len = 0, ret; u32 pairwise = 0; if (sm == NULL) return 0; /* TODO: FF-FF-FF-FF-FF-FF entry for broadcast/multicast stats */ /* dot11RSNAStatsEntry */ pairwise = wpa_cipher_to_suite(sm->wpa == WPA_VERSION_WPA2 ? WPA_PROTO_RSN : WPA_PROTO_WPA, sm->pairwise); if (pairwise == 0) return 0; ret = os_snprintf( buf + len, buflen - len, /* TODO: dot11RSNAStatsIndex */ "dot11RSNAStatsSTAAddress=" MACSTR "\n" "dot11RSNAStatsVersion=1\n" "dot11RSNAStatsSelectedPairwiseCipher=" RSN_SUITE "\n" /* TODO: dot11RSNAStatsTKIPICVErrors */ "dot11RSNAStatsTKIPLocalMICFailures=%u\n" "dot11RSNAStatsTKIPRemoteMICFailures=%u\n" /* TODO: dot11RSNAStatsCCMPReplays */ /* TODO: dot11RSNAStatsCCMPDecryptErrors */ /* TODO: dot11RSNAStatsTKIPReplays */, MAC2STR(sm->addr), RSN_SUITE_ARG(pairwise), sm->dot11RSNAStatsTKIPLocalMICFailures, sm->dot11RSNAStatsTKIPRemoteMICFailures); if (os_snprintf_error(buflen - len, ret)) return len; len += ret; /* Private MIB */ ret = os_snprintf(buf + len, buflen - len, "hostapdWPAPTKState=%d\n" "hostapdWPAPTKGroupState=%d\n", sm->wpa_ptk_state, sm->wpa_ptk_group_state); if (os_snprintf_error(buflen - len, ret)) return len; len += ret; return len; } void wpa_auth_countermeasures_start(struct wpa_authenticator *wpa_auth) { if (wpa_auth) wpa_auth->dot11RSNATKIPCounterMeasuresInvoked++; } int wpa_auth_pairwise_set(struct wpa_state_machine *sm) { return sm && sm->pairwise_set; } int wpa_auth_get_pairwise(struct wpa_state_machine *sm) { return sm->pairwise; } int wpa_auth_sta_key_mgmt(struct wpa_state_machine *sm) { if (sm == NULL) return -1; return sm->wpa_key_mgmt; } int wpa_auth_sta_wpa_version(struct wpa_state_machine *sm) { if (sm == NULL) return 0; return sm->wpa; } int wpa_auth_sta_ft_tk_already_set(struct wpa_state_machine *sm) { if (!sm || !wpa_key_mgmt_ft(sm->wpa_key_mgmt)) return 0; return sm->tk_already_set; } int wpa_auth_sta_fils_tk_already_set(struct wpa_state_machine *sm) { if (!sm || !wpa_key_mgmt_fils(sm->wpa_key_mgmt)) return 0; return sm->tk_already_set; } int wpa_auth_sta_clear_pmksa(struct wpa_state_machine *sm, struct rsn_pmksa_cache_entry *entry) { if (sm == NULL || sm->pmksa != entry) return -1; sm->pmksa = NULL; return 0; } struct rsn_pmksa_cache_entry * wpa_auth_sta_get_pmksa(struct wpa_state_machine *sm) { return sm ? sm->pmksa : NULL; } void wpa_auth_sta_local_mic_failure_report(struct wpa_state_machine *sm) { if (sm) sm->dot11RSNAStatsTKIPLocalMICFailures++; } const u8 * wpa_auth_get_wpa_ie(struct wpa_authenticator *wpa_auth, size_t *len) { if (wpa_auth == NULL) return NULL; *len = wpa_auth->wpa_ie_len; return wpa_auth->wpa_ie; } int wpa_auth_pmksa_add(struct wpa_state_machine *sm, const u8 *pmk, unsigned int pmk_len, int session_timeout, struct eapol_state_machine *eapol) { if (sm == NULL || sm->wpa != WPA_VERSION_WPA2 || sm->wpa_auth->conf.disable_pmksa_caching) return -1; if (wpa_key_mgmt_sha384(sm->wpa_key_mgmt)) { if (pmk_len > PMK_LEN_SUITE_B_192) pmk_len = PMK_LEN_SUITE_B_192; } else if (pmk_len > PMK_LEN) { pmk_len = PMK_LEN; } if (pmksa_cache_auth_add(sm->wpa_auth->pmksa, pmk, pmk_len, NULL, sm->PTK.kck, sm->PTK.kck_len, sm->wpa_auth->addr, sm->addr, session_timeout, eapol, sm->wpa_key_mgmt)) return 0; return -1; } int wpa_auth_pmksa_add_preauth(struct wpa_authenticator *wpa_auth, const u8 *pmk, size_t len, const u8 *sta_addr, int session_timeout, struct eapol_state_machine *eapol) { if (wpa_auth == NULL) return -1; if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, len, NULL, NULL, 0, wpa_auth->addr, sta_addr, session_timeout, eapol, WPA_KEY_MGMT_IEEE8021X)) return 0; return -1; } int wpa_auth_pmksa_add_sae(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *pmk, const u8 *pmkid) { if (wpa_auth->conf.disable_pmksa_caching) return -1; if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, PMK_LEN, pmkid, NULL, 0, wpa_auth->addr, addr, 0, NULL, WPA_KEY_MGMT_SAE)) return 0; return -1; } void wpa_auth_add_sae_pmkid(struct wpa_state_machine *sm, const u8 *pmkid) { os_memcpy(sm->pmkid, pmkid, PMKID_LEN); sm->pmkid_set = 1; } int wpa_auth_pmksa_add2(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *pmk, size_t pmk_len, const u8 *pmkid, int session_timeout, int akmp) { if (wpa_auth->conf.disable_pmksa_caching) return -1; if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, pmk_len, pmkid, NULL, 0, wpa_auth->addr, addr, session_timeout, NULL, akmp)) return 0; return -1; } void wpa_auth_pmksa_remove(struct wpa_authenticator *wpa_auth, const u8 *sta_addr) { struct rsn_pmksa_cache_entry *pmksa; if (wpa_auth == NULL || wpa_auth->pmksa == NULL) return; pmksa = pmksa_cache_auth_get(wpa_auth->pmksa, sta_addr, NULL); if (pmksa) { wpa_printf(MSG_DEBUG, "WPA: Remove PMKSA cache entry for " MACSTR " based on request", MAC2STR(sta_addr)); pmksa_cache_free_entry(wpa_auth->pmksa, pmksa); } } int wpa_auth_pmksa_list(struct wpa_authenticator *wpa_auth, char *buf, size_t len) { if (!wpa_auth || !wpa_auth->pmksa) return 0; return pmksa_cache_auth_list(wpa_auth->pmksa, buf, len); } void wpa_auth_pmksa_flush(struct wpa_authenticator *wpa_auth) { if (wpa_auth && wpa_auth->pmksa) pmksa_cache_auth_flush(wpa_auth->pmksa); } #ifdef CONFIG_PMKSA_CACHE_EXTERNAL #ifdef CONFIG_MESH int wpa_auth_pmksa_list_mesh(struct wpa_authenticator *wpa_auth, const u8 *addr, char *buf, size_t len) { if (!wpa_auth || !wpa_auth->pmksa) return 0; return pmksa_cache_auth_list_mesh(wpa_auth->pmksa, addr, buf, len); } struct rsn_pmksa_cache_entry * wpa_auth_pmksa_create_entry(const u8 *aa, const u8 *spa, const u8 *pmk, const u8 *pmkid, int expiration) { struct rsn_pmksa_cache_entry *entry; struct os_reltime now; entry = pmksa_cache_auth_create_entry(pmk, PMK_LEN, pmkid, NULL, 0, aa, spa, 0, NULL, WPA_KEY_MGMT_SAE); if (!entry) return NULL; os_get_reltime(&now); entry->expiration = now.sec + expiration; return entry; } int wpa_auth_pmksa_add_entry(struct wpa_authenticator *wpa_auth, struct rsn_pmksa_cache_entry *entry) { int ret; if (!wpa_auth || !wpa_auth->pmksa) return -1; ret = pmksa_cache_auth_add_entry(wpa_auth->pmksa, entry); if (ret < 0) wpa_printf(MSG_DEBUG, "RSN: Failed to store external PMKSA cache for " MACSTR, MAC2STR(entry->spa)); return ret; } #endif /* CONFIG_MESH */ #endif /* CONFIG_PMKSA_CACHE_EXTERNAL */ struct rsn_pmksa_cache_entry * wpa_auth_pmksa_get(struct wpa_authenticator *wpa_auth, const u8 *sta_addr, const u8 *pmkid) { if (!wpa_auth || !wpa_auth->pmksa) return NULL; return pmksa_cache_auth_get(wpa_auth->pmksa, sta_addr, pmkid); } void wpa_auth_pmksa_set_to_sm(struct rsn_pmksa_cache_entry *pmksa, struct wpa_state_machine *sm, struct wpa_authenticator *wpa_auth, u8 *pmkid, u8 *pmk) { if (!sm) return; sm->pmksa = pmksa; os_memcpy(pmk, pmksa->pmk, PMK_LEN); os_memcpy(pmkid, pmksa->pmkid, PMKID_LEN); os_memcpy(wpa_auth->dot11RSNAPMKIDUsed, pmksa->pmkid, PMKID_LEN); } /* * Remove and free the group from wpa_authenticator. This is triggered by a * callback to make sure nobody is currently iterating the group list while it * gets modified. */ static void wpa_group_free(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { struct wpa_group *prev = wpa_auth->group; wpa_printf(MSG_DEBUG, "WPA: Remove group state machine for VLAN-ID %d", group->vlan_id); while (prev) { if (prev->next == group) { /* This never frees the special first group as needed */ prev->next = group->next; os_free(group); break; } prev = prev->next; } } /* Increase the reference counter for group */ static void wpa_group_get(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { /* Skip the special first group */ if (wpa_auth->group == group) return; group->references++; } /* Decrease the reference counter and maybe free the group */ static void wpa_group_put(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { /* Skip the special first group */ if (wpa_auth->group == group) return; group->references--; if (group->references) return; wpa_group_free(wpa_auth, group); } /* * Add a group that has its references counter set to zero. Caller needs to * call wpa_group_get() on the return value to mark the entry in use. */ static struct wpa_group * wpa_auth_add_group(struct wpa_authenticator *wpa_auth, int vlan_id) { struct wpa_group *group; if (wpa_auth == NULL || wpa_auth->group == NULL) return NULL; wpa_printf(MSG_DEBUG, "WPA: Add group state machine for VLAN-ID %d", vlan_id); group = wpa_group_init(wpa_auth, vlan_id, 0); if (group == NULL) return NULL; group->next = wpa_auth->group->next; wpa_auth->group->next = group; return group; } /* * Enforce that the group state machine for the VLAN is running, increase * reference counter as interface is up. References might have been increased * even if a negative value is returned. * Returns: -1 on error (group missing, group already failed); otherwise, 0 */ int wpa_auth_ensure_group(struct wpa_authenticator *wpa_auth, int vlan_id) { struct wpa_group *group; if (wpa_auth == NULL) return 0; group = wpa_auth->group; while (group) { if (group->vlan_id == vlan_id) break; group = group->next; } if (group == NULL) { group = wpa_auth_add_group(wpa_auth, vlan_id); if (group == NULL) return -1; } wpa_printf(MSG_DEBUG, "WPA: Ensure group state machine running for VLAN ID %d", vlan_id); wpa_group_get(wpa_auth, group); group->num_setup_iface++; if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) return -1; return 0; } /* * Decrease reference counter, expected to be zero afterwards. * returns: -1 on error (group not found, group in fail state) * -2 if wpa_group is still referenced * 0 else */ int wpa_auth_release_group(struct wpa_authenticator *wpa_auth, int vlan_id) { struct wpa_group *group; int ret = 0; if (wpa_auth == NULL) return 0; group = wpa_auth->group; while (group) { if (group->vlan_id == vlan_id) break; group = group->next; } if (group == NULL) return -1; wpa_printf(MSG_DEBUG, "WPA: Try stopping group state machine for VLAN ID %d", vlan_id); if (group->num_setup_iface <= 0) { wpa_printf(MSG_ERROR, "WPA: wpa_auth_release_group called more often than wpa_auth_ensure_group for VLAN ID %d, skipping.", vlan_id); return -1; } group->num_setup_iface--; if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) ret = -1; if (group->references > 1) { wpa_printf(MSG_DEBUG, "WPA: Cannot stop group state machine for VLAN ID %d as references are still hold", vlan_id); ret = -2; } wpa_group_put(wpa_auth, group); return ret; } int wpa_auth_sta_set_vlan(struct wpa_state_machine *sm, int vlan_id) { struct wpa_group *group; if (sm == NULL || sm->wpa_auth == NULL) return 0; group = sm->wpa_auth->group; while (group) { if (group->vlan_id == vlan_id) break; group = group->next; } if (group == NULL) { group = wpa_auth_add_group(sm->wpa_auth, vlan_id); if (group == NULL) return -1; } if (sm->group == group) return 0; if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) return -1; wpa_printf(MSG_DEBUG, "WPA: Moving STA " MACSTR " to use group state " "machine for VLAN ID %d", MAC2STR(sm->addr), vlan_id); wpa_group_get(sm->wpa_auth, group); wpa_group_put(sm->wpa_auth, sm->group); sm->group = group; return 0; } void wpa_auth_eapol_key_tx_status(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int ack) { if (wpa_auth == NULL || sm == NULL) return; wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key TX status for STA " MACSTR " ack=%d", MAC2STR(sm->addr), ack); if (sm->pending_1_of_4_timeout && ack) { /* * Some deployed supplicant implementations update their SNonce * for each EAPOL-Key 2/4 message even within the same 4-way * handshake and then fail to use the first SNonce when * deriving the PTK. This results in unsuccessful 4-way * handshake whenever the relatively short initial timeout is * reached and EAPOL-Key 1/4 is retransmitted. Try to work * around this by increasing the timeout now that we know that * the station has received the frame. */ int timeout_ms = eapol_key_timeout_subseq; wpa_printf(MSG_DEBUG, "WPA: Increase initial EAPOL-Key 1/4 " "timeout by %u ms because of acknowledged frame", timeout_ms); eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm); eloop_register_timeout(timeout_ms / 1000, (timeout_ms % 1000) * 1000, wpa_send_eapol_timeout, wpa_auth, sm); } #ifdef CONFIG_TESTING_OPTIONS if (sm->eapol_status_cb) { sm->eapol_status_cb(sm->eapol_status_cb_ctx1, sm->eapol_status_cb_ctx2); sm->eapol_status_cb = NULL; } #endif /* CONFIG_TESTING_OPTIONS */ } int wpa_auth_uses_sae(struct wpa_state_machine *sm) { if (sm == NULL) return 0; return wpa_key_mgmt_sae(sm->wpa_key_mgmt); } int wpa_auth_uses_ft_sae(struct wpa_state_machine *sm) { if (sm == NULL) return 0; return sm->wpa_key_mgmt == WPA_KEY_MGMT_FT_SAE; } #ifdef CONFIG_P2P int wpa_auth_get_ip_addr(struct wpa_state_machine *sm, u8 *addr) { if (sm == NULL || WPA_GET_BE32(sm->ip_addr) == 0) return -1; os_memcpy(addr, sm->ip_addr, 4); return 0; } #endif /* CONFIG_P2P */ int wpa_auth_radius_das_disconnect_pmksa(struct wpa_authenticator *wpa_auth, struct radius_das_attrs *attr) { return pmksa_cache_auth_radius_das_disconnect(wpa_auth->pmksa, attr); } void wpa_auth_reconfig_group_keys(struct wpa_authenticator *wpa_auth) { struct wpa_group *group; if (!wpa_auth) return; for (group = wpa_auth->group; group; group = group->next) wpa_group_config_group_keys(wpa_auth, group); } #ifdef CONFIG_FILS struct wpa_auth_fils_iter_data { struct wpa_authenticator *auth; const u8 *cache_id; struct rsn_pmksa_cache_entry *pmksa; const u8 *spa; const u8 *pmkid; }; static int wpa_auth_fils_iter(struct wpa_authenticator *a, void *ctx) { struct wpa_auth_fils_iter_data *data = ctx; if (a == data->auth || !a->conf.fils_cache_id_set || os_memcmp(a->conf.fils_cache_id, data->cache_id, FILS_CACHE_ID_LEN) != 0) return 0; data->pmksa = pmksa_cache_auth_get(a->pmksa, data->spa, data->pmkid); return data->pmksa != NULL; } struct rsn_pmksa_cache_entry * wpa_auth_pmksa_get_fils_cache_id(struct wpa_authenticator *wpa_auth, const u8 *sta_addr, const u8 *pmkid) { struct wpa_auth_fils_iter_data idata; if (!wpa_auth->conf.fils_cache_id_set) return NULL; idata.auth = wpa_auth; idata.cache_id = wpa_auth->conf.fils_cache_id; idata.pmksa = NULL; idata.spa = sta_addr; idata.pmkid = pmkid; wpa_auth_for_each_auth(wpa_auth, wpa_auth_fils_iter, &idata); return idata.pmksa; } #ifdef CONFIG_IEEE80211R_AP int wpa_auth_write_fte(struct wpa_authenticator *wpa_auth, int use_sha384, u8 *buf, size_t len) { struct wpa_auth_config *conf = &wpa_auth->conf; return wpa_write_ftie(conf, use_sha384, conf->r0_key_holder, conf->r0_key_holder_len, NULL, NULL, buf, len, NULL, 0); } #endif /* CONFIG_IEEE80211R_AP */ void wpa_auth_get_fils_aead_params(struct wpa_state_machine *sm, u8 *fils_anonce, u8 *fils_snonce, u8 *fils_kek, size_t *fils_kek_len) { os_memcpy(fils_anonce, sm->ANonce, WPA_NONCE_LEN); os_memcpy(fils_snonce, sm->SNonce, WPA_NONCE_LEN); os_memcpy(fils_kek, sm->PTK.kek, WPA_KEK_MAX_LEN); *fils_kek_len = sm->PTK.kek_len; } #endif /* CONFIG_FILS */ #ifdef CONFIG_TESTING_OPTIONS int wpa_auth_resend_m1(struct wpa_state_machine *sm, int change_anonce, void (*cb)(void *ctx1, void *ctx2), void *ctx1, void *ctx2) { const u8 *anonce = sm->ANonce; u8 anonce_buf[WPA_NONCE_LEN]; if (change_anonce) { if (random_get_bytes(anonce_buf, WPA_NONCE_LEN)) return -1; anonce = anonce_buf; } wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "sending 1/4 msg of 4-Way Handshake (TESTING)"); wpa_send_eapol(sm->wpa_auth, sm, WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL, anonce, NULL, 0, 0, 0); return 0; } int wpa_auth_resend_m3(struct wpa_state_machine *sm, void (*cb)(void *ctx1, void *ctx2), void *ctx1, void *ctx2) { u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde, *pos; #ifdef CONFIG_IEEE80211W u8 *opos; #endif /* CONFIG_IEEE80211W */ size_t gtk_len, kde_len; struct wpa_group *gsm = sm->group; u8 *wpa_ie; int wpa_ie_len, secure, keyidx, encr = 0; /* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, [MDIE], GTK[GN], IGTK, [FTIE], [TIE * 2]) */ /* Use 0 RSC */ os_memset(rsc, 0, WPA_KEY_RSC_LEN); /* If FT is used, wpa_auth->wpa_ie includes both RSNIE and MDIE */ wpa_ie = sm->wpa_auth->wpa_ie; wpa_ie_len = sm->wpa_auth->wpa_ie_len; if (sm->wpa == WPA_VERSION_WPA && (sm->wpa_auth->conf.wpa & WPA_PROTO_RSN) && wpa_ie_len > wpa_ie[1] + 2 && wpa_ie[0] == WLAN_EID_RSN) { /* WPA-only STA, remove RSN IE and possible MDIE */ wpa_ie = wpa_ie + wpa_ie[1] + 2; if (wpa_ie[0] == WLAN_EID_MOBILITY_DOMAIN) wpa_ie = wpa_ie + wpa_ie[1] + 2; wpa_ie_len = wpa_ie[1] + 2; } wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "sending 3/4 msg of 4-Way Handshake (TESTING)"); if (sm->wpa == WPA_VERSION_WPA2) { /* WPA2 send GTK in the 4-way handshake */ secure = 1; gtk = gsm->GTK[gsm->GN - 1]; gtk_len = gsm->GTK_len; keyidx = gsm->GN; _rsc = rsc; encr = 1; } else { /* WPA does not include GTK in msg 3/4 */ secure = 0; gtk = NULL; gtk_len = 0; keyidx = 0; _rsc = NULL; if (sm->rx_eapol_key_secure) { /* * It looks like Windows 7 supplicant tries to use * Secure bit in msg 2/4 after having reported Michael * MIC failure and it then rejects the 4-way handshake * if msg 3/4 does not set Secure bit. Work around this * by setting the Secure bit here even in the case of * WPA if the supplicant used it first. */ wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "STA used Secure bit in WPA msg 2/4 - " "set Secure for 3/4 as workaround"); secure = 1; } } kde_len = wpa_ie_len + ieee80211w_kde_len(sm) + ocv_oci_len(sm); if (gtk) kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len; #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { kde_len += 2 + PMKID_LEN; /* PMKR1Name into RSN IE */ kde_len += 300; /* FTIE + 2 * TIE */ } #endif /* CONFIG_IEEE80211R_AP */ kde = os_malloc(kde_len); if (kde == NULL) return -1; pos = kde; os_memcpy(pos, wpa_ie, wpa_ie_len); pos += wpa_ie_len; #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { int res; size_t elen; elen = pos - kde; res = wpa_insert_pmkid(kde, &elen, sm->pmk_r1_name); if (res < 0) { wpa_printf(MSG_ERROR, "FT: Failed to insert " "PMKR1Name into RSN IE in EAPOL-Key data"); os_free(kde); return -1; } pos -= wpa_ie_len; pos += elen; } #endif /* CONFIG_IEEE80211R_AP */ if (gtk) { u8 hdr[2]; hdr[0] = keyidx & 0x03; hdr[1] = 0; pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gtk_len); } #ifdef CONFIG_IEEE80211W opos = pos; pos = ieee80211w_kde_add(sm, pos); if (pos - opos >= 2 + RSN_SELECTOR_LEN + WPA_IGTK_KDE_PREFIX_LEN) { /* skip KDE header and keyid */ opos += 2 + RSN_SELECTOR_LEN + 2; os_memset(opos, 0, 6); /* clear PN */ } #endif /* CONFIG_IEEE80211W */ if (ocv_oci_add(sm, &pos) < 0) { os_free(kde); return -1; } #ifdef CONFIG_IEEE80211R_AP if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { int res; struct wpa_auth_config *conf; conf = &sm->wpa_auth->conf; if (sm->assoc_resp_ftie && kde + kde_len - pos >= 2 + sm->assoc_resp_ftie[1]) { os_memcpy(pos, sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]); res = 2 + sm->assoc_resp_ftie[1]; } else { int use_sha384 = wpa_key_mgmt_sha384(sm->wpa_key_mgmt); res = wpa_write_ftie(conf, use_sha384, conf->r0_key_holder, conf->r0_key_holder_len, NULL, NULL, pos, kde + kde_len - pos, NULL, 0); } if (res < 0) { wpa_printf(MSG_ERROR, "FT: Failed to insert FTIE " "into EAPOL-Key Key Data"); os_free(kde); return -1; } pos += res; /* TIE[ReassociationDeadline] (TU) */ *pos++ = WLAN_EID_TIMEOUT_INTERVAL; *pos++ = 5; *pos++ = WLAN_TIMEOUT_REASSOC_DEADLINE; WPA_PUT_LE32(pos, conf->reassociation_deadline); pos += 4; /* TIE[KeyLifetime] (seconds) */ *pos++ = WLAN_EID_TIMEOUT_INTERVAL; *pos++ = 5; *pos++ = WLAN_TIMEOUT_KEY_LIFETIME; WPA_PUT_LE32(pos, conf->r0_key_lifetime); pos += 4; } #endif /* CONFIG_IEEE80211R_AP */ wpa_send_eapol(sm->wpa_auth, sm, (secure ? WPA_KEY_INFO_SECURE : 0) | (wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ? WPA_KEY_INFO_MIC : 0) | WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL | WPA_KEY_INFO_KEY_TYPE, _rsc, sm->ANonce, kde, pos - kde, keyidx, encr); os_free(kde); return 0; } int wpa_auth_resend_group_m1(struct wpa_state_machine *sm, void (*cb)(void *ctx1, void *ctx2), void *ctx1, void *ctx2) { u8 rsc[WPA_KEY_RSC_LEN]; struct wpa_group *gsm = sm->group; const u8 *kde; u8 *kde_buf = NULL, *pos, hdr[2]; #ifdef CONFIG_IEEE80211W u8 *opos; #endif /* CONFIG_IEEE80211W */ size_t kde_len; u8 *gtk; /* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */ os_memset(rsc, 0, WPA_KEY_RSC_LEN); /* Use 0 RSC */ wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG, "sending 1/2 msg of Group Key Handshake (TESTING)"); gtk = gsm->GTK[gsm->GN - 1]; if (sm->wpa == WPA_VERSION_WPA2) { kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len + ieee80211w_kde_len(sm) + ocv_oci_len(sm); kde_buf = os_malloc(kde_len); if (kde_buf == NULL) return -1; kde = pos = kde_buf; hdr[0] = gsm->GN & 0x03; hdr[1] = 0; pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gsm->GTK_len); #ifdef CONFIG_IEEE80211W opos = pos; pos = ieee80211w_kde_add(sm, pos); if (pos - opos >= 2 + RSN_SELECTOR_LEN + WPA_IGTK_KDE_PREFIX_LEN) { /* skip KDE header and keyid */ opos += 2 + RSN_SELECTOR_LEN + 2; os_memset(opos, 0, 6); /* clear PN */ } #endif /* CONFIG_IEEE80211W */ if (ocv_oci_add(sm, &pos) < 0) { os_free(kde_buf); return -1; } kde_len = pos - kde; } else { kde = gtk; kde_len = gsm->GTK_len; } sm->eapol_status_cb = cb; sm->eapol_status_cb_ctx1 = ctx1; sm->eapol_status_cb_ctx2 = ctx2; wpa_send_eapol(sm->wpa_auth, sm, WPA_KEY_INFO_SECURE | (wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ? WPA_KEY_INFO_MIC : 0) | WPA_KEY_INFO_ACK | (!sm->Pair ? WPA_KEY_INFO_INSTALL : 0), rsc, NULL, kde, kde_len, gsm->GN, 1); os_free(kde_buf); return 0; } int wpa_auth_rekey_gtk(struct wpa_authenticator *wpa_auth) { if (!wpa_auth) return -1; eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL); return eloop_register_timeout(0, 0, wpa_rekey_gtk, wpa_auth, NULL); } #endif /* CONFIG_TESTING_OPTIONS */