/* * WPA Supplicant - Scanning * Copyright (c) 2003-2019, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include "utils/common.h" #include "utils/eloop.h" #include "common/ieee802_11_defs.h" #include "common/wpa_ctrl.h" #include "config.h" #include "wpa_supplicant_i.h" #include "driver_i.h" #include "wps_supplicant.h" #include "p2p_supplicant.h" #include "p2p/p2p.h" #include "hs20_supplicant.h" #include "notify.h" #include "bss.h" #include "scan.h" #include "mesh.h" static struct wpabuf * wpa_supplicant_extra_ies(struct wpa_supplicant *wpa_s); static void wpa_supplicant_gen_assoc_event(struct wpa_supplicant *wpa_s) { struct wpa_ssid *ssid; union wpa_event_data data; ssid = wpa_supplicant_get_ssid(wpa_s); if (ssid == NULL) return; if (wpa_s->current_ssid == NULL) { wpa_s->current_ssid = ssid; wpas_notify_network_changed(wpa_s); } wpa_supplicant_initiate_eapol(wpa_s); wpa_dbg(wpa_s, MSG_DEBUG, "Already associated with a configured " "network - generating associated event"); os_memset(&data, 0, sizeof(data)); wpa_supplicant_event(wpa_s, EVENT_ASSOC, &data); } #ifdef CONFIG_WPS static int wpas_wps_in_use(struct wpa_supplicant *wpa_s, enum wps_request_type *req_type) { struct wpa_ssid *ssid; int wps = 0; for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) { if (!(ssid->key_mgmt & WPA_KEY_MGMT_WPS)) continue; wps = 1; *req_type = wpas_wps_get_req_type(ssid); if (ssid->eap.phase1 && os_strstr(ssid->eap.phase1, "pbc=1")) return 2; } #ifdef CONFIG_P2P if (!wpa_s->global->p2p_disabled && wpa_s->global->p2p && !wpa_s->conf->p2p_disabled) { wpa_s->wps->dev.p2p = 1; if (!wps) { wps = 1; *req_type = WPS_REQ_ENROLLEE_INFO; } } #endif /* CONFIG_P2P */ return wps; } #endif /* CONFIG_WPS */ static int wpa_setup_mac_addr_rand_params(struct wpa_driver_scan_params *params, const u8 *mac_addr) { u8 *tmp; if (params->mac_addr) { params->mac_addr_mask = NULL; os_free(params->mac_addr); params->mac_addr = NULL; } params->mac_addr_rand = 1; if (!mac_addr) return 0; tmp = os_malloc(2 * ETH_ALEN); if (!tmp) return -1; os_memcpy(tmp, mac_addr, 2 * ETH_ALEN); params->mac_addr = tmp; params->mac_addr_mask = tmp + ETH_ALEN; return 0; } /** * wpa_supplicant_enabled_networks - Check whether there are enabled networks * @wpa_s: Pointer to wpa_supplicant data * Returns: 0 if no networks are enabled, >0 if networks are enabled * * This function is used to figure out whether any networks (or Interworking * with enabled credentials and auto_interworking) are present in the current * configuration. */ int wpa_supplicant_enabled_networks(struct wpa_supplicant *wpa_s) { struct wpa_ssid *ssid = wpa_s->conf->ssid; int count = 0, disabled = 0; if (wpa_s->p2p_mgmt) return 0; /* no normal network profiles on p2p_mgmt interface */ while (ssid) { if (!wpas_network_disabled(wpa_s, ssid)) count++; else disabled++; ssid = ssid->next; } if (wpa_s->conf->cred && wpa_s->conf->interworking && wpa_s->conf->auto_interworking) count++; if (count == 0 && disabled > 0) { wpa_dbg(wpa_s, MSG_DEBUG, "No enabled networks (%d disabled " "networks)", disabled); } return count; } static void wpa_supplicant_assoc_try(struct wpa_supplicant *wpa_s, struct wpa_ssid *ssid) { int min_temp_disabled = 0; while (ssid) { if (!wpas_network_disabled(wpa_s, ssid)) { int temp_disabled = wpas_temp_disabled(wpa_s, ssid); if (temp_disabled <= 0) break; if (!min_temp_disabled || temp_disabled < min_temp_disabled) min_temp_disabled = temp_disabled; } ssid = ssid->next; } /* ap_scan=2 mode - try to associate with each SSID. */ if (ssid == NULL) { wpa_dbg(wpa_s, MSG_DEBUG, "wpa_supplicant_assoc_try: Reached " "end of scan list - go back to beginning"); wpa_s->prev_scan_ssid = WILDCARD_SSID_SCAN; wpa_supplicant_req_scan(wpa_s, min_temp_disabled, 0); return; } if (ssid->next) { /* Continue from the next SSID on the next attempt. */ wpa_s->prev_scan_ssid = ssid; } else { /* Start from the beginning of the SSID list. */ wpa_s->prev_scan_ssid = WILDCARD_SSID_SCAN; } wpa_supplicant_associate(wpa_s, NULL, ssid); } static void wpas_trigger_scan_cb(struct wpa_radio_work *work, int deinit) { struct wpa_supplicant *wpa_s = work->wpa_s; struct wpa_driver_scan_params *params = work->ctx; int ret; if (deinit) { if (!work->started) { wpa_scan_free_params(params); return; } wpa_supplicant_notify_scanning(wpa_s, 0); wpas_notify_scan_done(wpa_s, 0); wpa_s->scan_work = NULL; return; } if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_SCAN) && wpa_s->wpa_state <= WPA_SCANNING) wpa_setup_mac_addr_rand_params(params, wpa_s->mac_addr_scan); if (wpas_update_random_addr_disassoc(wpa_s) < 0) { wpa_msg(wpa_s, MSG_INFO, "Failed to assign random MAC address for a scan"); wpa_scan_free_params(params); wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_SCAN_FAILED "ret=-1"); radio_work_done(work); return; } wpa_supplicant_notify_scanning(wpa_s, 1); if (wpa_s->clear_driver_scan_cache) { wpa_printf(MSG_DEBUG, "Request driver to clear scan cache due to local BSS flush"); params->only_new_results = 1; } ret = wpa_drv_scan(wpa_s, params); /* * Store the obtained vendor scan cookie (if any) in wpa_s context. * The current design is to allow only one scan request on each * interface, hence having this scan cookie stored in wpa_s context is * fine for now. * * Revisit this logic if concurrent scan operations per interface * is supported. */ if (ret == 0) wpa_s->curr_scan_cookie = params->scan_cookie; wpa_scan_free_params(params); work->ctx = NULL; if (ret) { int retry = wpa_s->last_scan_req != MANUAL_SCAN_REQ && !wpa_s->beacon_rep_data.token; if (wpa_s->disconnected) retry = 0; /* do not retry if operation is not supported */ if (ret == -EOPNOTSUPP) retry = 0; wpa_supplicant_notify_scanning(wpa_s, 0); wpas_notify_scan_done(wpa_s, 0); if (wpa_s->wpa_state == WPA_SCANNING) wpa_supplicant_set_state(wpa_s, wpa_s->scan_prev_wpa_state); wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_SCAN_FAILED "ret=%d%s", ret, retry ? " retry=1" : ""); radio_work_done(work); if (retry) { /* Restore scan_req since we will try to scan again */ wpa_s->scan_req = wpa_s->last_scan_req; wpa_supplicant_req_scan(wpa_s, 1, 0); } else if (wpa_s->scan_res_handler) { /* Clear the scan_res_handler */ wpa_s->scan_res_handler = NULL; } #ifndef CONFIG_NO_RRM if (wpa_s->beacon_rep_data.token) wpas_rrm_refuse_request(wpa_s); #endif /* CONFIG_NO_RRM */ return; } os_get_reltime(&wpa_s->scan_trigger_time); wpa_s->scan_runs++; wpa_s->normal_scans++; wpa_s->own_scan_requested = 1; wpa_s->clear_driver_scan_cache = 0; wpa_s->scan_work = work; } /** * wpa_supplicant_trigger_scan - Request driver to start a scan * @wpa_s: Pointer to wpa_supplicant data * @params: Scan parameters * @default_ies: Whether or not to use the default IEs in the Probe Request * frames. Note that this will free any existing IEs set in @params, so this * shouldn't be set if the IEs have already been set with * wpa_supplicant_extra_ies(). Otherwise, wpabuf_free() will lead to a * double-free. * @next: Whether or not to perform this scan as the next radio work * Returns: 0 on success, -1 on failure */ int wpa_supplicant_trigger_scan(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params, bool default_ies, bool next) { struct wpa_driver_scan_params *ctx; struct wpabuf *ies = NULL; if (wpa_s->scan_work) { wpa_dbg(wpa_s, MSG_INFO, "Reject scan trigger since one is already pending"); return -1; } if (default_ies) { if (params->extra_ies_len) { os_free((u8 *) params->extra_ies); params->extra_ies = NULL; params->extra_ies_len = 0; } ies = wpa_supplicant_extra_ies(wpa_s); if (ies) { params->extra_ies = wpabuf_head(ies); params->extra_ies_len = wpabuf_len(ies); } } ctx = wpa_scan_clone_params(params); if (ies) { wpabuf_free(ies); params->extra_ies = NULL; params->extra_ies_len = 0; } wpa_s->last_scan_all_chan = !params->freqs; wpa_s->last_scan_non_coloc_6ghz = params->non_coloc_6ghz; if (!ctx || radio_add_work(wpa_s, 0, "scan", next, wpas_trigger_scan_cb, ctx) < 0) { wpa_scan_free_params(ctx); wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_SCAN_FAILED "ret=-1"); return -1; } wpa_s->wps_scan_done = false; return 0; } static void wpa_supplicant_delayed_sched_scan_timeout(void *eloop_ctx, void *timeout_ctx) { struct wpa_supplicant *wpa_s = eloop_ctx; wpa_dbg(wpa_s, MSG_DEBUG, "Starting delayed sched scan"); if (wpa_supplicant_req_sched_scan(wpa_s)) wpa_supplicant_req_scan(wpa_s, 0, 0); } static void wpa_supplicant_sched_scan_timeout(void *eloop_ctx, void *timeout_ctx) { struct wpa_supplicant *wpa_s = eloop_ctx; wpa_dbg(wpa_s, MSG_DEBUG, "Sched scan timeout - stopping it"); wpa_s->sched_scan_timed_out = 1; wpa_supplicant_cancel_sched_scan(wpa_s); } static int wpa_supplicant_start_sched_scan(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params) { int ret; wpa_supplicant_notify_scanning(wpa_s, 1); ret = wpa_drv_sched_scan(wpa_s, params); if (ret) wpa_supplicant_notify_scanning(wpa_s, 0); else wpa_s->sched_scanning = 1; return ret; } static int wpa_supplicant_stop_sched_scan(struct wpa_supplicant *wpa_s) { int ret; ret = wpa_drv_stop_sched_scan(wpa_s); if (ret) { wpa_dbg(wpa_s, MSG_DEBUG, "stopping sched_scan failed!"); /* TODO: what to do if stopping fails? */ return -1; } return ret; } static struct wpa_driver_scan_filter * wpa_supplicant_build_filter_ssids(struct wpa_config *conf, size_t *num_ssids) { struct wpa_driver_scan_filter *ssids; struct wpa_ssid *ssid; size_t count; *num_ssids = 0; if (!conf->filter_ssids) return NULL; for (count = 0, ssid = conf->ssid; ssid; ssid = ssid->next) { if (ssid->ssid && ssid->ssid_len) count++; } if (count == 0) return NULL; ssids = os_calloc(count, sizeof(struct wpa_driver_scan_filter)); if (ssids == NULL) return NULL; for (ssid = conf->ssid; ssid; ssid = ssid->next) { if (!ssid->ssid || !ssid->ssid_len) continue; os_memcpy(ssids[*num_ssids].ssid, ssid->ssid, ssid->ssid_len); ssids[*num_ssids].ssid_len = ssid->ssid_len; (*num_ssids)++; } return ssids; } static void wpa_supplicant_optimize_freqs( struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params) { #ifdef CONFIG_P2P if (params->freqs == NULL && wpa_s->p2p_in_provisioning && wpa_s->go_params) { /* Optimize provisioning state scan based on GO information */ if (wpa_s->p2p_in_provisioning < 5 && wpa_s->go_params->freq > 0) { wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only GO " "preferred frequency %d MHz", wpa_s->go_params->freq); params->freqs = os_calloc(2, sizeof(int)); if (params->freqs) params->freqs[0] = wpa_s->go_params->freq; } else if (wpa_s->p2p_in_provisioning < 8 && wpa_s->go_params->freq_list[0]) { wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only common " "channels"); int_array_concat(¶ms->freqs, wpa_s->go_params->freq_list); if (params->freqs) int_array_sort_unique(params->freqs); } wpa_s->p2p_in_provisioning++; } if (params->freqs == NULL && wpa_s->p2p_in_invitation) { struct wpa_ssid *ssid = wpa_s->current_ssid; /* * Perform a single-channel scan if the GO has already been * discovered on another non-P2P interface. Note that a scan * initiated by a P2P interface (e.g., the device interface) * should already have sufficient IEs and scan results will be * fetched on interface creation in that case. */ if (wpa_s->p2p_in_invitation == 1 && ssid) { struct wpa_supplicant *ifs; struct wpa_bss *bss = NULL; const u8 *bssid = ssid->bssid_set ? ssid->bssid : NULL; dl_list_for_each(ifs, &wpa_s->radio->ifaces, struct wpa_supplicant, radio_list) { bss = wpa_bss_get(ifs, bssid, ssid->ssid, ssid->ssid_len); if (bss) break; } if (bss && !disabled_freq(wpa_s, bss->freq)) { params->freqs = os_calloc(2, sizeof(int)); if (params->freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only the known GO frequency %d MHz during invitation", bss->freq); params->freqs[0] = bss->freq; } } } /* * Optimize scan based on GO information during persistent * group reinvocation */ if (!params->freqs && wpa_s->p2p_in_invitation < 5 && wpa_s->p2p_invite_go_freq > 0) { if (wpa_s->p2p_invite_go_freq == 2 || wpa_s->p2p_invite_go_freq == 5) { enum hostapd_hw_mode mode; wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only GO preferred band %d GHz during invitation", wpa_s->p2p_invite_go_freq); if (!wpa_s->hw.modes) return; mode = wpa_s->p2p_invite_go_freq == 5 ? HOSTAPD_MODE_IEEE80211A : HOSTAPD_MODE_IEEE80211G; if (wpa_s->p2p_in_invitation <= 2) wpa_add_scan_freqs_list(wpa_s, mode, params, false, false, true); if (!params->freqs || params->freqs[0] == 0) wpa_add_scan_freqs_list(wpa_s, mode, params, false, false, false); } else { wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only GO preferred frequency %d MHz during invitation", wpa_s->p2p_invite_go_freq); params->freqs = os_calloc(2, sizeof(int)); if (params->freqs) params->freqs[0] = wpa_s->p2p_invite_go_freq; } } wpa_s->p2p_in_invitation++; if (wpa_s->p2p_in_invitation > 20) { /* * This should not really happen since the variable is * cleared on group removal, but if it does happen, make * sure we do not get stuck in special invitation scan * mode. */ wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Clear p2p_in_invitation"); wpa_s->p2p_in_invitation = 0; wpa_s->p2p_retry_limit = 0; } } #endif /* CONFIG_P2P */ #ifdef CONFIG_WPS if (params->freqs == NULL && wpa_s->after_wps && wpa_s->wps_freq) { /* * Optimize post-provisioning scan based on channel used * during provisioning. */ wpa_dbg(wpa_s, MSG_DEBUG, "WPS: Scan only frequency %u MHz " "that was used during provisioning", wpa_s->wps_freq); params->freqs = os_calloc(2, sizeof(int)); if (params->freqs) params->freqs[0] = wpa_s->wps_freq; wpa_s->after_wps--; } else if (wpa_s->after_wps) wpa_s->after_wps--; if (params->freqs == NULL && wpa_s->known_wps_freq && wpa_s->wps_freq) { /* Optimize provisioning scan based on already known channel */ wpa_dbg(wpa_s, MSG_DEBUG, "WPS: Scan only frequency %u MHz", wpa_s->wps_freq); params->freqs = os_calloc(2, sizeof(int)); if (params->freqs) params->freqs[0] = wpa_s->wps_freq; wpa_s->known_wps_freq = 0; /* only do this once */ } #endif /* CONFIG_WPS */ } #ifdef CONFIG_INTERWORKING static void wpas_add_interworking_elements(struct wpa_supplicant *wpa_s, struct wpabuf *buf) { wpabuf_put_u8(buf, WLAN_EID_INTERWORKING); wpabuf_put_u8(buf, is_zero_ether_addr(wpa_s->conf->hessid) ? 1 : 1 + ETH_ALEN); wpabuf_put_u8(buf, wpa_s->conf->access_network_type); /* No Venue Info */ if (!is_zero_ether_addr(wpa_s->conf->hessid)) wpabuf_put_data(buf, wpa_s->conf->hessid, ETH_ALEN); } #endif /* CONFIG_INTERWORKING */ #ifdef CONFIG_MBO static void wpas_fils_req_param_add_max_channel(struct wpa_supplicant *wpa_s, struct wpabuf **ie) { if (wpabuf_resize(ie, 5)) { wpa_printf(MSG_DEBUG, "Failed to allocate space for FILS Request Parameters element"); return; } /* FILS Request Parameters element */ wpabuf_put_u8(*ie, WLAN_EID_EXTENSION); wpabuf_put_u8(*ie, 3); /* FILS Request attribute length */ wpabuf_put_u8(*ie, WLAN_EID_EXT_FILS_REQ_PARAMS); /* Parameter control bitmap */ wpabuf_put_u8(*ie, 0); /* Max Channel Time field - contains the value of MaxChannelTime * parameter of the MLME-SCAN.request primitive represented in units of * TUs, as an unsigned integer. A Max Channel Time field value of 255 * is used to indicate any duration of more than 254 TUs, or an * unspecified or unknown duration. (IEEE Std 802.11ai-2016, 9.4.2.178) */ wpabuf_put_u8(*ie, 255); } #endif /* CONFIG_MBO */ void wpa_supplicant_set_default_scan_ies(struct wpa_supplicant *wpa_s) { struct wpabuf *default_ies = NULL; u8 ext_capab[18]; int ext_capab_len, frame_id; enum wpa_driver_if_type type = WPA_IF_STATION; #ifdef CONFIG_P2P if (wpa_s->p2p_group_interface == P2P_GROUP_INTERFACE_CLIENT) type = WPA_IF_P2P_CLIENT; #endif /* CONFIG_P2P */ wpa_drv_get_ext_capa(wpa_s, type); ext_capab_len = wpas_build_ext_capab(wpa_s, ext_capab, sizeof(ext_capab), NULL); if (ext_capab_len > 0 && wpabuf_resize(&default_ies, ext_capab_len) == 0) wpabuf_put_data(default_ies, ext_capab, ext_capab_len); #ifdef CONFIG_MBO if (wpa_s->enable_oce & OCE_STA) wpas_fils_req_param_add_max_channel(wpa_s, &default_ies); /* Send MBO and OCE capabilities */ if (wpabuf_resize(&default_ies, 12) == 0) wpas_mbo_scan_ie(wpa_s, default_ies); #endif /* CONFIG_MBO */ if (type == WPA_IF_P2P_CLIENT) frame_id = VENDOR_ELEM_PROBE_REQ_P2P; else frame_id = VENDOR_ELEM_PROBE_REQ; if (wpa_s->vendor_elem[frame_id]) { size_t len; len = wpabuf_len(wpa_s->vendor_elem[frame_id]); if (len > 0 && wpabuf_resize(&default_ies, len) == 0) wpabuf_put_buf(default_ies, wpa_s->vendor_elem[frame_id]); } if (default_ies) wpa_drv_set_default_scan_ies(wpa_s, wpabuf_head(default_ies), wpabuf_len(default_ies)); wpabuf_free(default_ies); } static struct wpabuf * wpa_supplicant_ml_probe_ie(int mld_id, u16 links) { struct wpabuf *extra_ie; u16 control = MULTI_LINK_CONTROL_TYPE_PROBE_REQ; size_t len = 3 + 4 + 4 * MAX_NUM_MLD_LINKS; u8 link_id; u8 *len_pos; if (mld_id >= 0) { control |= EHT_ML_PRES_BM_PROBE_REQ_AP_MLD_ID; len++; } extra_ie = wpabuf_alloc(len); if (!extra_ie) return NULL; wpabuf_put_u8(extra_ie, WLAN_EID_EXTENSION); len_pos = wpabuf_put(extra_ie, 1); wpabuf_put_u8(extra_ie, WLAN_EID_EXT_MULTI_LINK); wpabuf_put_le16(extra_ie, control); /* common info length and MLD ID (if requested) */ if (mld_id >= 0) { wpabuf_put_u8(extra_ie, 2); wpabuf_put_u8(extra_ie, mld_id); wpa_printf(MSG_DEBUG, "MLD: ML probe targeted at MLD ID %d", mld_id); } else { wpabuf_put_u8(extra_ie, 1); wpa_printf(MSG_DEBUG, "MLD: ML probe targeted at receiving AP"); } if (!links) wpa_printf(MSG_DEBUG, "MLD: Probing all links"); else wpa_printf(MSG_DEBUG, "MLD: Probing links 0x%04x", links); for_each_link(links, link_id) { wpabuf_put_u8(extra_ie, EHT_ML_SUB_ELEM_PER_STA_PROFILE); /* Subelement length includes only the control */ wpabuf_put_u8(extra_ie, 2); control = link_id | EHT_PER_STA_CTRL_COMPLETE_PROFILE_MSK; wpabuf_put_le16(extra_ie, control); } *len_pos = (u8 *) wpabuf_put(extra_ie, 0) - len_pos - 1; return extra_ie; } static struct wpabuf * wpa_supplicant_extra_ies(struct wpa_supplicant *wpa_s) { struct wpabuf *extra_ie = NULL; u8 ext_capab[18]; int ext_capab_len; #ifdef CONFIG_WPS int wps = 0; enum wps_request_type req_type = WPS_REQ_ENROLLEE_INFO; #endif /* CONFIG_WPS */ if (!is_zero_ether_addr(wpa_s->ml_probe_bssid)) { extra_ie = wpa_supplicant_ml_probe_ie(wpa_s->ml_probe_mld_id, wpa_s->ml_probe_links); /* No other elements should be included in the probe request */ wpa_printf(MSG_DEBUG, "MLD: Scan including only ML element"); return extra_ie; } #ifdef CONFIG_P2P if (wpa_s->p2p_group_interface == P2P_GROUP_INTERFACE_CLIENT) wpa_drv_get_ext_capa(wpa_s, WPA_IF_P2P_CLIENT); else #endif /* CONFIG_P2P */ wpa_drv_get_ext_capa(wpa_s, WPA_IF_STATION); ext_capab_len = wpas_build_ext_capab(wpa_s, ext_capab, sizeof(ext_capab), NULL); if (ext_capab_len > 0 && wpabuf_resize(&extra_ie, ext_capab_len) == 0) wpabuf_put_data(extra_ie, ext_capab, ext_capab_len); #ifdef CONFIG_INTERWORKING if (wpa_s->conf->interworking && wpabuf_resize(&extra_ie, 100) == 0) wpas_add_interworking_elements(wpa_s, extra_ie); #endif /* CONFIG_INTERWORKING */ #ifdef CONFIG_MBO if (wpa_s->enable_oce & OCE_STA) wpas_fils_req_param_add_max_channel(wpa_s, &extra_ie); #endif /* CONFIG_MBO */ #ifdef CONFIG_WPS wps = wpas_wps_in_use(wpa_s, &req_type); if (wps) { struct wpabuf *wps_ie; wps_ie = wps_build_probe_req_ie(wps == 2 ? DEV_PW_PUSHBUTTON : DEV_PW_DEFAULT, &wpa_s->wps->dev, wpa_s->wps->uuid, req_type, 0, NULL); if (wps_ie) { if (wpabuf_resize(&extra_ie, wpabuf_len(wps_ie)) == 0) wpabuf_put_buf(extra_ie, wps_ie); wpabuf_free(wps_ie); } } #ifdef CONFIG_P2P if (wps) { size_t ielen = p2p_scan_ie_buf_len(wpa_s->global->p2p); if (wpabuf_resize(&extra_ie, ielen) == 0) wpas_p2p_scan_ie(wpa_s, extra_ie); } #endif /* CONFIG_P2P */ wpa_supplicant_mesh_add_scan_ie(wpa_s, &extra_ie); #endif /* CONFIG_WPS */ #ifdef CONFIG_HS20 if (wpa_s->conf->hs20 && wpabuf_resize(&extra_ie, 9) == 0) wpas_hs20_add_indication(extra_ie, -1, 0); #endif /* CONFIG_HS20 */ #ifdef CONFIG_FST if (wpa_s->fst_ies && wpabuf_resize(&extra_ie, wpabuf_len(wpa_s->fst_ies)) == 0) wpabuf_put_buf(extra_ie, wpa_s->fst_ies); #endif /* CONFIG_FST */ #ifdef CONFIG_MBO /* Send MBO and OCE capabilities */ if (wpabuf_resize(&extra_ie, 12) == 0) wpas_mbo_scan_ie(wpa_s, extra_ie); #endif /* CONFIG_MBO */ if (wpa_s->vendor_elem[VENDOR_ELEM_PROBE_REQ]) { struct wpabuf *buf = wpa_s->vendor_elem[VENDOR_ELEM_PROBE_REQ]; if (wpabuf_resize(&extra_ie, wpabuf_len(buf)) == 0) wpabuf_put_buf(extra_ie, buf); } return extra_ie; } #ifdef CONFIG_P2P /* * Check whether there are any enabled networks or credentials that could be * used for a non-P2P connection. */ static int non_p2p_network_enabled(struct wpa_supplicant *wpa_s) { struct wpa_ssid *ssid; for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) { if (wpas_network_disabled(wpa_s, ssid)) continue; if (!ssid->p2p_group) return 1; } if (wpa_s->conf->cred && wpa_s->conf->interworking && wpa_s->conf->auto_interworking) return 1; return 0; } #endif /* CONFIG_P2P */ int wpa_add_scan_freqs_list(struct wpa_supplicant *wpa_s, enum hostapd_hw_mode band, struct wpa_driver_scan_params *params, bool is_6ghz, bool only_6ghz_psc, bool exclude_radar) { /* Include only supported channels for the specified band */ struct hostapd_hw_modes *mode; int num_chans = 0; int *freqs, i; mode = get_mode(wpa_s->hw.modes, wpa_s->hw.num_modes, band, is_6ghz); if (!mode || !mode->num_channels) return -1; if (params->freqs) { while (params->freqs[num_chans]) num_chans++; } freqs = os_realloc(params->freqs, (num_chans + mode->num_channels + 1) * sizeof(int)); if (!freqs) return -1; params->freqs = freqs; for (i = 0; i < mode->num_channels; i++) { if (mode->channels[i].flag & HOSTAPD_CHAN_DISABLED) continue; if (exclude_radar && (mode->channels[i].flag & HOSTAPD_CHAN_RADAR)) continue; if (is_6ghz && only_6ghz_psc && !is_6ghz_psc_frequency(mode->channels[i].freq)) continue; params->freqs[num_chans++] = mode->channels[i].freq; } params->freqs[num_chans] = 0; return 0; } static void wpa_setband_scan_freqs(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params) { if (wpa_s->hw.modes == NULL) return; /* unknown what channels the driver supports */ if (params->freqs) return; /* already using a limited channel set */ if (wpa_s->setband_mask & WPA_SETBAND_5G) wpa_add_scan_freqs_list(wpa_s, HOSTAPD_MODE_IEEE80211A, params, false, false, false); if (wpa_s->setband_mask & WPA_SETBAND_2G) wpa_add_scan_freqs_list(wpa_s, HOSTAPD_MODE_IEEE80211G, params, false, false, false); if (wpa_s->setband_mask & WPA_SETBAND_6G) wpa_add_scan_freqs_list(wpa_s, HOSTAPD_MODE_IEEE80211A, params, true, false, false); } static void wpa_add_scan_ssid(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params, size_t max_ssids, const u8 *ssid, size_t ssid_len) { unsigned int j; for (j = 0; j < params->num_ssids; j++) { if (params->ssids[j].ssid_len == ssid_len && params->ssids[j].ssid && os_memcmp(params->ssids[j].ssid, ssid, ssid_len) == 0) return; /* already in the list */ } if (params->num_ssids + 1 > max_ssids) { wpa_printf(MSG_DEBUG, "Over max scan SSIDs for manual request"); return; } wpa_printf(MSG_DEBUG, "Scan SSID (manual request): %s", wpa_ssid_txt(ssid, ssid_len)); params->ssids[params->num_ssids].ssid = ssid; params->ssids[params->num_ssids].ssid_len = ssid_len; params->num_ssids++; } static void wpa_add_owe_scan_ssid(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params, struct wpa_ssid *ssid, size_t max_ssids) { #ifdef CONFIG_OWE struct wpa_bss *bss; if (!(ssid->key_mgmt & WPA_KEY_MGMT_OWE)) return; wpa_printf(MSG_DEBUG, "OWE: Look for transition mode AP. ssid=%s", wpa_ssid_txt(ssid->ssid, ssid->ssid_len)); dl_list_for_each(bss, &wpa_s->bss, struct wpa_bss, list) { const u8 *owe, *pos, *end; const u8 *owe_ssid; size_t owe_ssid_len; if (bss->ssid_len != ssid->ssid_len || os_memcmp(bss->ssid, ssid->ssid, ssid->ssid_len) != 0) continue; owe = wpa_bss_get_vendor_ie(bss, OWE_IE_VENDOR_TYPE); if (!owe || owe[1] < 4) continue; pos = owe + 6; end = owe + 2 + owe[1]; /* Must include BSSID and ssid_len */ if (end - pos < ETH_ALEN + 1) return; /* Skip BSSID */ pos += ETH_ALEN; owe_ssid_len = *pos++; owe_ssid = pos; if ((size_t) (end - pos) < owe_ssid_len || owe_ssid_len > SSID_MAX_LEN) return; wpa_printf(MSG_DEBUG, "OWE: scan_ssids: transition mode OWE ssid=%s", wpa_ssid_txt(owe_ssid, owe_ssid_len)); wpa_add_scan_ssid(wpa_s, params, max_ssids, owe_ssid, owe_ssid_len); return; } #endif /* CONFIG_OWE */ } static void wpa_set_scan_ssids(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params, size_t max_ssids) { unsigned int i; struct wpa_ssid *ssid; /* * For devices with max_ssids greater than 1, leave the last slot empty * for adding the wildcard scan entry. */ max_ssids = max_ssids > 1 ? max_ssids - 1 : max_ssids; for (i = 0; i < wpa_s->scan_id_count; i++) { ssid = wpa_config_get_network(wpa_s->conf, wpa_s->scan_id[i]); if (!ssid) continue; if (ssid->scan_ssid) wpa_add_scan_ssid(wpa_s, params, max_ssids, ssid->ssid, ssid->ssid_len); /* * Also add the SSID of the OWE BSS, to allow discovery of * transition mode APs more quickly. */ wpa_add_owe_scan_ssid(wpa_s, params, ssid, max_ssids); } wpa_s->scan_id_count = 0; } static int wpa_set_ssids_from_scan_req(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params, size_t max_ssids) { unsigned int i; if (wpa_s->ssids_from_scan_req == NULL || wpa_s->num_ssids_from_scan_req == 0) return 0; if (wpa_s->num_ssids_from_scan_req > max_ssids) { wpa_s->num_ssids_from_scan_req = max_ssids; wpa_printf(MSG_DEBUG, "Over max scan SSIDs from scan req: %u", (unsigned int) max_ssids); } for (i = 0; i < wpa_s->num_ssids_from_scan_req; i++) { params->ssids[i].ssid = wpa_s->ssids_from_scan_req[i].ssid; params->ssids[i].ssid_len = wpa_s->ssids_from_scan_req[i].ssid_len; wpa_hexdump_ascii(MSG_DEBUG, "specific SSID", params->ssids[i].ssid, params->ssids[i].ssid_len); } params->num_ssids = wpa_s->num_ssids_from_scan_req; wpa_s->num_ssids_from_scan_req = 0; return 1; } static void wpa_supplicant_scan(void *eloop_ctx, void *timeout_ctx) { struct wpa_supplicant *wpa_s = eloop_ctx; struct wpa_ssid *ssid; int ret, p2p_in_prog; struct wpabuf *extra_ie = NULL; struct wpa_driver_scan_params params; struct wpa_driver_scan_params *scan_params; size_t max_ssids; int connect_without_scan = 0; wpa_s->ignore_post_flush_scan_res = 0; if (wpa_s->wpa_state == WPA_INTERFACE_DISABLED) { wpa_dbg(wpa_s, MSG_DEBUG, "Skip scan - interface disabled"); return; } if (wpa_s->disconnected && wpa_s->scan_req == NORMAL_SCAN_REQ) { wpa_dbg(wpa_s, MSG_DEBUG, "Disconnected - do not scan"); wpa_supplicant_set_state(wpa_s, WPA_DISCONNECTED); return; } if (wpa_s->scanning) { /* * If we are already in scanning state, we shall reschedule the * the incoming scan request. */ wpa_dbg(wpa_s, MSG_DEBUG, "Already scanning - Reschedule the incoming scan req"); wpa_supplicant_req_scan(wpa_s, 1, 0); return; } if (!wpa_supplicant_enabled_networks(wpa_s) && wpa_s->scan_req == NORMAL_SCAN_REQ) { wpa_dbg(wpa_s, MSG_DEBUG, "No enabled networks - do not scan"); wpa_supplicant_set_state(wpa_s, WPA_INACTIVE); return; } if (wpa_s->conf->ap_scan != 0 && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_WIRED)) { wpa_dbg(wpa_s, MSG_DEBUG, "Using wired authentication - " "overriding ap_scan configuration"); wpa_s->conf->ap_scan = 0; wpas_notify_ap_scan_changed(wpa_s); } if (wpa_s->conf->ap_scan == 0) { wpa_supplicant_gen_assoc_event(wpa_s); return; } ssid = NULL; if (wpa_s->scan_req != MANUAL_SCAN_REQ && wpa_s->connect_without_scan) { connect_without_scan = 1; for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) { if (ssid == wpa_s->connect_without_scan) break; } } p2p_in_prog = wpas_p2p_in_progress(wpa_s); if (p2p_in_prog && p2p_in_prog != 2 && (!ssid || (ssid->mode != WPAS_MODE_AP && ssid->mode != WPAS_MODE_P2P_GO))) { wpa_dbg(wpa_s, MSG_DEBUG, "Delay station mode scan while P2P operation is in progress"); wpa_supplicant_req_scan(wpa_s, 5, 0); return; } /* * Don't cancel the scan based on ongoing PNO; defer it. Some scans are * used for changing modes inside wpa_supplicant (roaming, * auto-reconnect, etc). Discarding the scan might hurt these processes. * The normal use case for PNO is to suspend the host immediately after * starting PNO, so the periodic 100 ms attempts to run the scan do not * normally happen in practice multiple times, i.e., this is simply * restarting scanning once the host is woken up and PNO stopped. */ if (wpa_s->pno || wpa_s->pno_sched_pending) { wpa_dbg(wpa_s, MSG_DEBUG, "Defer scan - PNO is in progress"); wpa_supplicant_req_scan(wpa_s, 0, 100000); return; } if (wpa_s->conf->ap_scan == 2) max_ssids = 1; else { max_ssids = wpa_s->max_scan_ssids; if (max_ssids > WPAS_MAX_SCAN_SSIDS) max_ssids = WPAS_MAX_SCAN_SSIDS; } wpa_s->last_scan_req = wpa_s->scan_req; wpa_s->scan_req = NORMAL_SCAN_REQ; if (connect_without_scan) { wpa_s->connect_without_scan = NULL; if (ssid) { wpa_printf(MSG_DEBUG, "Start a pre-selected network " "without scan step"); wpa_supplicant_associate(wpa_s, NULL, ssid); return; } } os_memset(¶ms, 0, sizeof(params)); wpa_s->scan_prev_wpa_state = wpa_s->wpa_state; if (wpa_s->wpa_state == WPA_DISCONNECTED || wpa_s->wpa_state == WPA_INACTIVE) wpa_supplicant_set_state(wpa_s, WPA_SCANNING); /* * If autoscan has set its own scanning parameters */ if (wpa_s->autoscan_params != NULL) { scan_params = wpa_s->autoscan_params; goto scan; } if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && wpa_set_ssids_from_scan_req(wpa_s, ¶ms, max_ssids)) { wpa_printf(MSG_DEBUG, "Use specific SSIDs from SCAN command"); goto ssid_list_set; } #ifdef CONFIG_P2P if ((wpa_s->p2p_in_provisioning || wpa_s->show_group_started) && wpa_s->go_params && !wpa_s->conf->passive_scan) { wpa_printf(MSG_DEBUG, "P2P: Use specific SSID for scan during P2P group formation (p2p_in_provisioning=%d show_group_started=%d)", wpa_s->p2p_in_provisioning, wpa_s->show_group_started); params.ssids[0].ssid = wpa_s->go_params->ssid; params.ssids[0].ssid_len = wpa_s->go_params->ssid_len; params.num_ssids = 1; params.bssid = wpa_s->go_params->peer_interface_addr; wpa_printf(MSG_DEBUG, "P2P: Use specific BSSID " MACSTR " (peer interface address) for scan", MAC2STR(params.bssid)); goto ssid_list_set; } if (wpa_s->p2p_in_invitation) { if (wpa_s->current_ssid) { wpa_printf(MSG_DEBUG, "P2P: Use specific SSID for scan during invitation"); params.ssids[0].ssid = wpa_s->current_ssid->ssid; params.ssids[0].ssid_len = wpa_s->current_ssid->ssid_len; params.num_ssids = 1; if (wpa_s->current_ssid->bssid_set) { params.bssid = wpa_s->current_ssid->bssid; wpa_printf(MSG_DEBUG, "P2P: Use specific BSSID " MACSTR " for scan", MAC2STR(params.bssid)); } } else { wpa_printf(MSG_DEBUG, "P2P: No specific SSID known for scan during invitation"); } goto ssid_list_set; } #endif /* CONFIG_P2P */ /* Find the starting point from which to continue scanning */ ssid = wpa_s->conf->ssid; if (wpa_s->prev_scan_ssid != WILDCARD_SSID_SCAN) { while (ssid) { if (ssid == wpa_s->prev_scan_ssid) { ssid = ssid->next; break; } ssid = ssid->next; } } if (wpa_s->last_scan_req != MANUAL_SCAN_REQ && #ifdef CONFIG_AP !wpa_s->ap_iface && #endif /* CONFIG_AP */ wpa_s->conf->ap_scan == 2) { wpa_s->connect_without_scan = NULL; wpa_s->prev_scan_wildcard = 0; wpa_supplicant_assoc_try(wpa_s, ssid); return; } else if (wpa_s->conf->ap_scan == 2) { /* * User-initiated scan request in ap_scan == 2; scan with * wildcard SSID. */ ssid = NULL; } else if (wpa_s->reattach && wpa_s->current_ssid != NULL) { /* * Perform single-channel single-SSID scan for * reassociate-to-same-BSS operation. */ /* Setup SSID */ ssid = wpa_s->current_ssid; wpa_hexdump_ascii(MSG_DEBUG, "Scan SSID", ssid->ssid, ssid->ssid_len); params.ssids[0].ssid = ssid->ssid; params.ssids[0].ssid_len = ssid->ssid_len; params.num_ssids = 1; /* * Allocate memory for frequency array, allocate one extra * slot for the zero-terminator. */ params.freqs = os_malloc(sizeof(int) * 2); if (params.freqs) { params.freqs[0] = wpa_s->assoc_freq; params.freqs[1] = 0; } /* * Reset the reattach flag so that we fall back to full scan if * this scan fails. */ wpa_s->reattach = 0; } else { struct wpa_ssid *start = ssid, *tssid; int freqs_set = 0; if (ssid == NULL && max_ssids > 1) ssid = wpa_s->conf->ssid; while (ssid) { if (!wpas_network_disabled(wpa_s, ssid) && ssid->scan_ssid) { wpa_hexdump_ascii(MSG_DEBUG, "Scan SSID", ssid->ssid, ssid->ssid_len); params.ssids[params.num_ssids].ssid = ssid->ssid; params.ssids[params.num_ssids].ssid_len = ssid->ssid_len; params.num_ssids++; if (params.num_ssids + 1 >= max_ssids) break; } if (!wpas_network_disabled(wpa_s, ssid)) { /* * Also add the SSID of the OWE BSS, to allow * discovery of transition mode APs more * quickly. */ wpa_add_owe_scan_ssid(wpa_s, ¶ms, ssid, max_ssids); } ssid = ssid->next; if (ssid == start) break; if (ssid == NULL && max_ssids > 1 && start != wpa_s->conf->ssid) ssid = wpa_s->conf->ssid; } if (wpa_s->scan_id_count && wpa_s->last_scan_req == MANUAL_SCAN_REQ) wpa_set_scan_ssids(wpa_s, ¶ms, max_ssids); for (tssid = wpa_s->conf->ssid; wpa_s->last_scan_req != MANUAL_SCAN_REQ && tssid; tssid = tssid->next) { if (wpas_network_disabled(wpa_s, tssid)) continue; if (((params.freqs || !freqs_set) && tssid->scan_freq) && int_array_len(params.freqs) < 100) { int_array_concat(¶ms.freqs, tssid->scan_freq); } else { os_free(params.freqs); params.freqs = NULL; } freqs_set = 1; } int_array_sort_unique(params.freqs); } if (ssid && max_ssids == 1) { /* * If the driver is limited to 1 SSID at a time interleave * wildcard SSID scans with specific SSID scans to avoid * waiting a long time for a wildcard scan. */ if (!wpa_s->prev_scan_wildcard) { params.ssids[0].ssid = NULL; params.ssids[0].ssid_len = 0; wpa_s->prev_scan_wildcard = 1; wpa_dbg(wpa_s, MSG_DEBUG, "Starting AP scan for " "wildcard SSID (Interleave with specific)"); } else { wpa_s->prev_scan_ssid = ssid; wpa_s->prev_scan_wildcard = 0; wpa_dbg(wpa_s, MSG_DEBUG, "Starting AP scan for specific SSID: %s", wpa_ssid_txt(ssid->ssid, ssid->ssid_len)); } } else if (ssid) { /* max_ssids > 1 */ wpa_s->prev_scan_ssid = ssid; wpa_dbg(wpa_s, MSG_DEBUG, "Include wildcard SSID in " "the scan request"); params.num_ssids++; } else if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && wpa_s->manual_scan_passive && params.num_ssids == 0) { wpa_dbg(wpa_s, MSG_DEBUG, "Use passive scan based on manual request"); } else if (wpa_s->conf->passive_scan) { wpa_dbg(wpa_s, MSG_DEBUG, "Use passive scan based on configuration"); } else { wpa_s->prev_scan_ssid = WILDCARD_SSID_SCAN; params.num_ssids++; wpa_dbg(wpa_s, MSG_DEBUG, "Starting AP scan for wildcard " "SSID"); } ssid_list_set: wpa_supplicant_optimize_freqs(wpa_s, ¶ms); extra_ie = wpa_supplicant_extra_ies(wpa_s); if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && wpa_s->manual_scan_only_new) { wpa_printf(MSG_DEBUG, "Request driver to clear scan cache due to manual only_new=1 scan"); params.only_new_results = 1; } if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && params.freqs == NULL && wpa_s->manual_scan_freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Limit manual scan to specified channels"); params.freqs = wpa_s->manual_scan_freqs; wpa_s->manual_scan_freqs = NULL; } if (params.freqs == NULL && wpa_s->select_network_scan_freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Limit select_network scan to specified channels"); params.freqs = wpa_s->select_network_scan_freqs; wpa_s->select_network_scan_freqs = NULL; } if (params.freqs == NULL && wpa_s->next_scan_freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Optimize scan based on previously " "generated frequency list"); params.freqs = wpa_s->next_scan_freqs; } else os_free(wpa_s->next_scan_freqs); wpa_s->next_scan_freqs = NULL; wpa_setband_scan_freqs(wpa_s, ¶ms); /* See if user specified frequencies. If so, scan only those. */ if (wpa_s->last_scan_req == INITIAL_SCAN_REQ && wpa_s->conf->initial_freq_list && !params.freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Optimize scan based on conf->initial_freq_list"); int_array_concat(¶ms.freqs, wpa_s->conf->initial_freq_list); } else if (wpa_s->conf->freq_list && !params.freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Optimize scan based on conf->freq_list"); int_array_concat(¶ms.freqs, wpa_s->conf->freq_list); } /* Use current associated channel? */ if (wpa_s->conf->scan_cur_freq && !params.freqs) { unsigned int num = wpa_s->num_multichan_concurrent; params.freqs = os_calloc(num + 1, sizeof(int)); if (params.freqs) { num = get_shared_radio_freqs(wpa_s, params.freqs, num, false); if (num > 0) { wpa_dbg(wpa_s, MSG_DEBUG, "Scan only the " "current operating channels since " "scan_cur_freq is enabled"); } else { os_free(params.freqs); params.freqs = NULL; } } } #ifdef CONFIG_MBO if (wpa_s->enable_oce & OCE_STA) params.oce_scan = 1; #endif /* CONFIG_MBO */ params.filter_ssids = wpa_supplicant_build_filter_ssids( wpa_s->conf, ¶ms.num_filter_ssids); if (extra_ie) { params.extra_ies = wpabuf_head(extra_ie); params.extra_ies_len = wpabuf_len(extra_ie); } #ifdef CONFIG_P2P if (wpa_s->p2p_in_provisioning || wpa_s->p2p_in_invitation || (wpa_s->show_group_started && wpa_s->go_params)) { /* * The interface may not yet be in P2P mode, so we have to * explicitly request P2P probe to disable CCK rates. */ params.p2p_probe = 1; } #endif /* CONFIG_P2P */ if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_SCAN) && wpa_s->wpa_state <= WPA_SCANNING) wpa_setup_mac_addr_rand_params(¶ms, wpa_s->mac_addr_scan); if (!is_zero_ether_addr(wpa_s->next_scan_bssid)) { struct wpa_bss *bss; params.bssid = wpa_s->next_scan_bssid; bss = wpa_bss_get_bssid_latest(wpa_s, params.bssid); if (!wpa_s->next_scan_bssid_wildcard_ssid && bss && bss->ssid_len && params.num_ssids == 1 && params.ssids[0].ssid_len == 0) { params.ssids[0].ssid = bss->ssid; params.ssids[0].ssid_len = bss->ssid_len; wpa_dbg(wpa_s, MSG_DEBUG, "Scan a previously specified BSSID " MACSTR " and SSID %s", MAC2STR(params.bssid), wpa_ssid_txt(bss->ssid, bss->ssid_len)); } else { wpa_dbg(wpa_s, MSG_DEBUG, "Scan a previously specified BSSID " MACSTR, MAC2STR(params.bssid)); } } else if (!is_zero_ether_addr(wpa_s->ml_probe_bssid)) { wpa_printf(MSG_DEBUG, "Scanning for ML probe request"); params.bssid = wpa_s->ml_probe_bssid; params.min_probe_req_content = true; } if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && wpa_s->manual_non_coloc_6ghz) { wpa_dbg(wpa_s, MSG_DEBUG, "Collocated 6 GHz logic is disabled"); params.non_coloc_6ghz = 1; } scan_params = ¶ms; scan: #ifdef CONFIG_P2P /* * If the driver does not support multi-channel concurrency and a * virtual interface that shares the same radio with the wpa_s interface * is operating there may not be need to scan other channels apart from * the current operating channel on the other virtual interface. Filter * out other channels in case we are trying to find a connection for a * station interface when we are not configured to prefer station * connection and a concurrent operation is already in process. */ if (wpa_s->scan_for_connection && wpa_s->last_scan_req == NORMAL_SCAN_REQ && !scan_params->freqs && !params.freqs && wpas_is_p2p_prioritized(wpa_s) && wpa_s->p2p_group_interface == NOT_P2P_GROUP_INTERFACE && non_p2p_network_enabled(wpa_s)) { unsigned int num = wpa_s->num_multichan_concurrent; params.freqs = os_calloc(num + 1, sizeof(int)); if (params.freqs) { /* * Exclude the operating frequency of the current * interface since we're looking to transition off of * it. */ num = get_shared_radio_freqs(wpa_s, params.freqs, num, true); if (num > 0 && num == wpa_s->num_multichan_concurrent) { wpa_dbg(wpa_s, MSG_DEBUG, "Scan only the current operating channels since all channels are already used"); } else { os_free(params.freqs); params.freqs = NULL; } } } if (!params.freqs && wpas_is_6ghz_supported(wpa_s, true) && (wpa_s->p2p_in_invitation || wpa_s->p2p_in_provisioning)) wpas_p2p_scan_freqs(wpa_s, ¶ms, true); #endif /* CONFIG_P2P */ ret = wpa_supplicant_trigger_scan(wpa_s, scan_params, false, false); if (ret && wpa_s->last_scan_req == MANUAL_SCAN_REQ && params.freqs && !wpa_s->manual_scan_freqs) { /* Restore manual_scan_freqs for the next attempt */ wpa_s->manual_scan_freqs = params.freqs; params.freqs = NULL; } wpabuf_free(extra_ie); os_free(params.freqs); os_free(params.filter_ssids); os_free(params.mac_addr); if (ret) { wpa_msg(wpa_s, MSG_WARNING, "Failed to initiate AP scan"); if (wpa_s->scan_prev_wpa_state != wpa_s->wpa_state) wpa_supplicant_set_state(wpa_s, wpa_s->scan_prev_wpa_state); /* Restore scan_req since we will try to scan again */ wpa_s->scan_req = wpa_s->last_scan_req; wpa_supplicant_req_scan(wpa_s, 1, 0); } else { wpa_s->scan_for_connection = 0; #ifdef CONFIG_INTERWORKING wpa_s->interworking_fast_assoc_tried = 0; #endif /* CONFIG_INTERWORKING */ wpa_s->next_scan_bssid_wildcard_ssid = 0; if (params.bssid) os_memset(wpa_s->next_scan_bssid, 0, ETH_ALEN); } wpa_s->ml_probe_mld_id = -1; wpa_s->ml_probe_links = 0; os_memset(wpa_s->ml_probe_bssid, 0, sizeof(wpa_s->ml_probe_bssid)); } void wpa_supplicant_update_scan_int(struct wpa_supplicant *wpa_s, int sec) { struct os_reltime remaining, new_int; int cancelled; cancelled = eloop_cancel_timeout_one(wpa_supplicant_scan, wpa_s, NULL, &remaining); new_int.sec = sec; new_int.usec = 0; if (cancelled && os_reltime_before(&remaining, &new_int)) { new_int.sec = remaining.sec; new_int.usec = remaining.usec; } if (cancelled) { eloop_register_timeout(new_int.sec, new_int.usec, wpa_supplicant_scan, wpa_s, NULL); } wpa_s->scan_interval = sec; } /** * wpa_supplicant_req_scan - Schedule a scan for neighboring access points * @wpa_s: Pointer to wpa_supplicant data * @sec: Number of seconds after which to scan * @usec: Number of microseconds after which to scan * * This function is used to schedule a scan for neighboring access points after * the specified time. */ void wpa_supplicant_req_scan(struct wpa_supplicant *wpa_s, int sec, int usec) { int res; if (wpa_s->p2p_mgmt) { wpa_dbg(wpa_s, MSG_DEBUG, "Ignore scan request (%d.%06d sec) on p2p_mgmt interface", sec, usec); return; } res = eloop_deplete_timeout(sec, usec, wpa_supplicant_scan, wpa_s, NULL); if (res == 1) { wpa_dbg(wpa_s, MSG_DEBUG, "Rescheduling scan request: %d.%06d sec", sec, usec); } else if (res == 0) { wpa_dbg(wpa_s, MSG_DEBUG, "Ignore new scan request for %d.%06d sec since an earlier request is scheduled to trigger sooner", sec, usec); } else { wpa_dbg(wpa_s, MSG_DEBUG, "Setting scan request: %d.%06d sec", sec, usec); eloop_register_timeout(sec, usec, wpa_supplicant_scan, wpa_s, NULL); } } /** * wpa_supplicant_delayed_sched_scan - Request a delayed scheduled scan * @wpa_s: Pointer to wpa_supplicant data * @sec: Number of seconds after which to scan * @usec: Number of microseconds after which to scan * Returns: 0 on success or -1 otherwise * * This function is used to schedule periodic scans for neighboring * access points after the specified time. */ int wpa_supplicant_delayed_sched_scan(struct wpa_supplicant *wpa_s, int sec, int usec) { if (!wpa_s->sched_scan_supported) return -1; eloop_register_timeout(sec, usec, wpa_supplicant_delayed_sched_scan_timeout, wpa_s, NULL); return 0; } static void wpa_scan_set_relative_rssi_params(struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params) { if (wpa_s->wpa_state != WPA_COMPLETED || !(wpa_s->drv_flags & WPA_DRIVER_FLAGS_SCHED_SCAN_RELATIVE_RSSI) || wpa_s->srp.relative_rssi_set == 0) return; params->relative_rssi_set = 1; params->relative_rssi = wpa_s->srp.relative_rssi; if (wpa_s->srp.relative_adjust_rssi == 0) return; params->relative_adjust_band = wpa_s->srp.relative_adjust_band; params->relative_adjust_rssi = wpa_s->srp.relative_adjust_rssi; } /** * wpa_supplicant_req_sched_scan - Start a periodic scheduled scan * @wpa_s: Pointer to wpa_supplicant data * Returns: 0 is sched_scan was started or -1 otherwise * * This function is used to schedule periodic scans for neighboring * access points repeating the scan continuously. */ int wpa_supplicant_req_sched_scan(struct wpa_supplicant *wpa_s) { struct wpa_driver_scan_params params; struct wpa_driver_scan_params *scan_params; enum wpa_states prev_state; struct wpa_ssid *ssid = NULL; struct wpabuf *extra_ie = NULL; int ret; unsigned int max_sched_scan_ssids; int wildcard = 0; int need_ssids; struct sched_scan_plan scan_plan; if (!wpa_s->sched_scan_supported) return -1; if (wpa_s->max_sched_scan_ssids > WPAS_MAX_SCAN_SSIDS) max_sched_scan_ssids = WPAS_MAX_SCAN_SSIDS; else max_sched_scan_ssids = wpa_s->max_sched_scan_ssids; if (max_sched_scan_ssids < 1 || wpa_s->conf->disable_scan_offload) return -1; wpa_s->sched_scan_stop_req = 0; if (wpa_s->sched_scanning) { wpa_dbg(wpa_s, MSG_DEBUG, "Already sched scanning"); return 0; } need_ssids = 0; for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) { if (!wpas_network_disabled(wpa_s, ssid) && !ssid->scan_ssid) { /* Use wildcard SSID to find this network */ wildcard = 1; } else if (!wpas_network_disabled(wpa_s, ssid) && ssid->ssid_len) need_ssids++; #ifdef CONFIG_WPS if (!wpas_network_disabled(wpa_s, ssid) && ssid->key_mgmt == WPA_KEY_MGMT_WPS) { /* * Normal scan is more reliable and faster for WPS * operations and since these are for short periods of * time, the benefit of trying to use sched_scan would * be limited. */ wpa_dbg(wpa_s, MSG_DEBUG, "Use normal scan instead of " "sched_scan for WPS"); return -1; } #endif /* CONFIG_WPS */ } if (wildcard) need_ssids++; if (wpa_s->normal_scans < 3 && (need_ssids <= wpa_s->max_scan_ssids || wpa_s->max_scan_ssids >= (int) max_sched_scan_ssids)) { /* * When normal scan can speed up operations, use that for the * first operations before starting the sched_scan to allow * user space sleep more. We do this only if the normal scan * has functionality that is suitable for this or if the * sched_scan does not have better support for multiple SSIDs. */ wpa_dbg(wpa_s, MSG_DEBUG, "Use normal scan instead of " "sched_scan for initial scans (normal_scans=%d)", wpa_s->normal_scans); return -1; } os_memset(¶ms, 0, sizeof(params)); /* If we can't allocate space for the filters, we just don't filter */ params.filter_ssids = os_calloc(wpa_s->max_match_sets, sizeof(struct wpa_driver_scan_filter)); prev_state = wpa_s->wpa_state; if (wpa_s->wpa_state == WPA_DISCONNECTED || wpa_s->wpa_state == WPA_INACTIVE) wpa_supplicant_set_state(wpa_s, WPA_SCANNING); if (wpa_s->autoscan_params != NULL) { scan_params = wpa_s->autoscan_params; goto scan; } /* Find the starting point from which to continue scanning */ ssid = wpa_s->conf->ssid; if (wpa_s->prev_sched_ssid) { while (ssid) { if (ssid == wpa_s->prev_sched_ssid) { ssid = ssid->next; break; } ssid = ssid->next; } } if (!ssid || !wpa_s->prev_sched_ssid) { wpa_dbg(wpa_s, MSG_DEBUG, "Beginning of SSID list"); wpa_s->sched_scan_timeout = max_sched_scan_ssids * 2; wpa_s->first_sched_scan = 1; ssid = wpa_s->conf->ssid; wpa_s->prev_sched_ssid = ssid; } if (wildcard) { wpa_dbg(wpa_s, MSG_DEBUG, "Add wildcard SSID to sched_scan"); params.num_ssids++; } while (ssid) { if (wpas_network_disabled(wpa_s, ssid)) goto next; if (params.num_filter_ssids < wpa_s->max_match_sets && params.filter_ssids && ssid->ssid && ssid->ssid_len) { wpa_dbg(wpa_s, MSG_DEBUG, "add to filter ssid: %s", wpa_ssid_txt(ssid->ssid, ssid->ssid_len)); os_memcpy(params.filter_ssids[params.num_filter_ssids].ssid, ssid->ssid, ssid->ssid_len); params.filter_ssids[params.num_filter_ssids].ssid_len = ssid->ssid_len; params.num_filter_ssids++; } else if (params.filter_ssids && ssid->ssid && ssid->ssid_len) { wpa_dbg(wpa_s, MSG_DEBUG, "Not enough room for SSID " "filter for sched_scan - drop filter"); os_free(params.filter_ssids); params.filter_ssids = NULL; params.num_filter_ssids = 0; } if (ssid->scan_ssid && ssid->ssid && ssid->ssid_len) { if (params.num_ssids == max_sched_scan_ssids) break; /* only room for broadcast SSID */ wpa_dbg(wpa_s, MSG_DEBUG, "add to active scan ssid: %s", wpa_ssid_txt(ssid->ssid, ssid->ssid_len)); params.ssids[params.num_ssids].ssid = ssid->ssid; params.ssids[params.num_ssids].ssid_len = ssid->ssid_len; params.num_ssids++; if (params.num_ssids >= max_sched_scan_ssids) { wpa_s->prev_sched_ssid = ssid; do { ssid = ssid->next; } while (ssid && (wpas_network_disabled(wpa_s, ssid) || !ssid->scan_ssid)); break; } } next: wpa_s->prev_sched_ssid = ssid; ssid = ssid->next; } if (params.num_filter_ssids == 0) { os_free(params.filter_ssids); params.filter_ssids = NULL; } extra_ie = wpa_supplicant_extra_ies(wpa_s); if (extra_ie) { params.extra_ies = wpabuf_head(extra_ie); params.extra_ies_len = wpabuf_len(extra_ie); } if (wpa_s->conf->filter_rssi) params.filter_rssi = wpa_s->conf->filter_rssi; /* See if user specified frequencies. If so, scan only those. */ if (wpa_s->conf->freq_list && !params.freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Optimize scan based on conf->freq_list"); int_array_concat(¶ms.freqs, wpa_s->conf->freq_list); } #ifdef CONFIG_MBO if (wpa_s->enable_oce & OCE_STA) params.oce_scan = 1; #endif /* CONFIG_MBO */ scan_params = ¶ms; scan: wpa_s->sched_scan_timed_out = 0; /* * We cannot support multiple scan plans if the scan request includes * too many SSID's, so in this case use only the last scan plan and make * it run infinitely. It will be stopped by the timeout. */ if (wpa_s->sched_scan_plans_num == 1 || (wpa_s->sched_scan_plans_num && !ssid && wpa_s->first_sched_scan)) { params.sched_scan_plans = wpa_s->sched_scan_plans; params.sched_scan_plans_num = wpa_s->sched_scan_plans_num; } else if (wpa_s->sched_scan_plans_num > 1) { wpa_dbg(wpa_s, MSG_DEBUG, "Too many SSIDs. Default to using single scheduled_scan plan"); params.sched_scan_plans = &wpa_s->sched_scan_plans[wpa_s->sched_scan_plans_num - 1]; params.sched_scan_plans_num = 1; } else { if (wpa_s->conf->sched_scan_interval) scan_plan.interval = wpa_s->conf->sched_scan_interval; else scan_plan.interval = 10; if (scan_plan.interval > wpa_s->max_sched_scan_plan_interval) { wpa_printf(MSG_WARNING, "Scan interval too long(%u), use the maximum allowed(%u)", scan_plan.interval, wpa_s->max_sched_scan_plan_interval); scan_plan.interval = wpa_s->max_sched_scan_plan_interval; } scan_plan.iterations = 0; params.sched_scan_plans = &scan_plan; params.sched_scan_plans_num = 1; } params.sched_scan_start_delay = wpa_s->conf->sched_scan_start_delay; if (ssid || !wpa_s->first_sched_scan) { wpa_dbg(wpa_s, MSG_DEBUG, "Starting sched scan after %u seconds: interval %u timeout %d", params.sched_scan_start_delay, params.sched_scan_plans[0].interval, wpa_s->sched_scan_timeout); } else { wpa_dbg(wpa_s, MSG_DEBUG, "Starting sched scan after %u seconds (no timeout)", params.sched_scan_start_delay); } wpa_setband_scan_freqs(wpa_s, scan_params); if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_SCHED_SCAN) && wpa_s->wpa_state <= WPA_SCANNING) wpa_setup_mac_addr_rand_params(¶ms, wpa_s->mac_addr_sched_scan); wpa_scan_set_relative_rssi_params(wpa_s, scan_params); ret = wpa_supplicant_start_sched_scan(wpa_s, scan_params); wpabuf_free(extra_ie); os_free(params.filter_ssids); os_free(params.mac_addr); if (ret) { wpa_msg(wpa_s, MSG_WARNING, "Failed to initiate sched scan"); if (prev_state != wpa_s->wpa_state) wpa_supplicant_set_state(wpa_s, prev_state); return ret; } /* If we have more SSIDs to scan, add a timeout so we scan them too */ if (ssid || !wpa_s->first_sched_scan) { wpa_s->sched_scan_timed_out = 0; eloop_register_timeout(wpa_s->sched_scan_timeout, 0, wpa_supplicant_sched_scan_timeout, wpa_s, NULL); wpa_s->first_sched_scan = 0; wpa_s->sched_scan_timeout /= 2; params.sched_scan_plans[0].interval *= 2; if ((unsigned int) wpa_s->sched_scan_timeout < params.sched_scan_plans[0].interval || params.sched_scan_plans[0].interval > wpa_s->max_sched_scan_plan_interval) { params.sched_scan_plans[0].interval = 10; wpa_s->sched_scan_timeout = max_sched_scan_ssids * 2; } } /* If there is no more ssids, start next time from the beginning */ if (!ssid) wpa_s->prev_sched_ssid = NULL; return 0; } /** * wpa_supplicant_cancel_scan - Cancel a scheduled scan request * @wpa_s: Pointer to wpa_supplicant data * * This function is used to cancel a scan request scheduled with * wpa_supplicant_req_scan(). */ void wpa_supplicant_cancel_scan(struct wpa_supplicant *wpa_s) { wpa_dbg(wpa_s, MSG_DEBUG, "Cancelling scan request"); eloop_cancel_timeout(wpa_supplicant_scan, wpa_s, NULL); } /** * wpa_supplicant_cancel_delayed_sched_scan - Stop a delayed scheduled scan * @wpa_s: Pointer to wpa_supplicant data * * This function is used to stop a delayed scheduled scan. */ void wpa_supplicant_cancel_delayed_sched_scan(struct wpa_supplicant *wpa_s) { if (!wpa_s->sched_scan_supported) return; wpa_dbg(wpa_s, MSG_DEBUG, "Cancelling delayed sched scan"); eloop_cancel_timeout(wpa_supplicant_delayed_sched_scan_timeout, wpa_s, NULL); } /** * wpa_supplicant_cancel_sched_scan - Stop running scheduled scans * @wpa_s: Pointer to wpa_supplicant data * * This function is used to stop a periodic scheduled scan. */ void wpa_supplicant_cancel_sched_scan(struct wpa_supplicant *wpa_s) { if (!wpa_s->sched_scanning) return; if (wpa_s->sched_scanning) wpa_s->sched_scan_stop_req = 1; wpa_dbg(wpa_s, MSG_DEBUG, "Cancelling sched scan"); eloop_cancel_timeout(wpa_supplicant_sched_scan_timeout, wpa_s, NULL); wpa_supplicant_stop_sched_scan(wpa_s); } /** * wpa_supplicant_notify_scanning - Indicate possible scan state change * @wpa_s: Pointer to wpa_supplicant data * @scanning: Whether scanning is currently in progress * * This function is to generate scanning notifycations. It is called whenever * there may have been a change in scanning (scan started, completed, stopped). * wpas_notify_scanning() is called whenever the scanning state changed from the * previously notified state. */ void wpa_supplicant_notify_scanning(struct wpa_supplicant *wpa_s, int scanning) { if (wpa_s->scanning != scanning) { wpa_s->scanning = scanning; wpas_notify_scanning(wpa_s); } } static int wpa_scan_get_max_rate(const struct wpa_scan_res *res) { int rate = 0; const u8 *ie; int i; ie = wpa_scan_get_ie(res, WLAN_EID_SUPP_RATES); for (i = 0; ie && i < ie[1]; i++) { if ((ie[i + 2] & 0x7f) > rate) rate = ie[i + 2] & 0x7f; } ie = wpa_scan_get_ie(res, WLAN_EID_EXT_SUPP_RATES); for (i = 0; ie && i < ie[1]; i++) { if ((ie[i + 2] & 0x7f) > rate) rate = ie[i + 2] & 0x7f; } return rate; } /** * wpa_scan_get_ie - Fetch a specified information element from a scan result * @res: Scan result entry * @ie: Information element identitifier (WLAN_EID_*) * Returns: Pointer to the information element (id field) or %NULL if not found * * This function returns the first matching information element in the scan * result. */ const u8 * wpa_scan_get_ie(const struct wpa_scan_res *res, u8 ie) { size_t ie_len = res->ie_len; /* Use the Beacon frame IEs if res->ie_len is not available */ if (!ie_len) ie_len = res->beacon_ie_len; return get_ie((const u8 *) (res + 1), ie_len, ie); } const u8 * wpa_scan_get_ml_ie(const struct wpa_scan_res *res, u8 type) { size_t ie_len = res->ie_len; /* Use the Beacon frame IEs if res->ie_len is not available */ if (!ie_len) ie_len = res->beacon_ie_len; return get_ml_ie((const u8 *) (res + 1), ie_len, type); } /** * wpa_scan_get_vendor_ie - Fetch vendor information element from a scan result * @res: Scan result entry * @vendor_type: Vendor type (four octets starting the IE payload) * Returns: Pointer to the information element (id field) or %NULL if not found * * This function returns the first matching information element in the scan * result. */ const u8 * wpa_scan_get_vendor_ie(const struct wpa_scan_res *res, u32 vendor_type) { const u8 *ies; const struct element *elem; ies = (const u8 *) (res + 1); for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, res->ie_len) { if (elem->datalen >= 4 && vendor_type == WPA_GET_BE32(elem->data)) return &elem->id; } return NULL; } /** * wpa_scan_get_vendor_ie_beacon - Fetch vendor information from a scan result * @res: Scan result entry * @vendor_type: Vendor type (four octets starting the IE payload) * Returns: Pointer to the information element (id field) or %NULL if not found * * This function returns the first matching information element in the scan * result. * * This function is like wpa_scan_get_vendor_ie(), but uses IE buffer only * from Beacon frames instead of either Beacon or Probe Response frames. */ const u8 * wpa_scan_get_vendor_ie_beacon(const struct wpa_scan_res *res, u32 vendor_type) { const u8 *ies; const struct element *elem; if (res->beacon_ie_len == 0) return NULL; ies = (const u8 *) (res + 1); ies += res->ie_len; for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, res->beacon_ie_len) { if (elem->datalen >= 4 && vendor_type == WPA_GET_BE32(elem->data)) return &elem->id; } return NULL; } /** * wpa_scan_get_vendor_ie_multi - Fetch vendor IE data from a scan result * @res: Scan result entry * @vendor_type: Vendor type (four octets starting the IE payload) * Returns: Pointer to the information element payload or %NULL if not found * * This function returns concatenated payload of possibly fragmented vendor * specific information elements in the scan result. The caller is responsible * for freeing the returned buffer. */ struct wpabuf * wpa_scan_get_vendor_ie_multi(const struct wpa_scan_res *res, u32 vendor_type) { struct wpabuf *buf; const u8 *end, *pos; buf = wpabuf_alloc(res->ie_len); if (buf == NULL) return NULL; pos = (const u8 *) (res + 1); end = pos + res->ie_len; while (end - pos > 1) { u8 ie, len; ie = pos[0]; len = pos[1]; if (len > end - pos - 2) break; pos += 2; if (ie == WLAN_EID_VENDOR_SPECIFIC && len >= 4 && vendor_type == WPA_GET_BE32(pos)) wpabuf_put_data(buf, pos + 4, len - 4); pos += len; } if (wpabuf_len(buf) == 0) { wpabuf_free(buf); buf = NULL; } return buf; } static int wpas_channel_width_offset(enum chan_width cw) { switch (cw) { case CHAN_WIDTH_40: return 1; case CHAN_WIDTH_80: return 2; case CHAN_WIDTH_80P80: case CHAN_WIDTH_160: return 3; case CHAN_WIDTH_320: return 4; default: return 0; } } /** * wpas_channel_width_tx_pwr - Calculate the max transmit power at the channel * width * @ies: Information elements * @ies_len: Length of elements * @cw: The channel width * Returns: The max transmit power at the channel width, TX_POWER_NO_CONSTRAINT * if it is not constrained. * * This function is only used to estimate the actual signal RSSI when associated * based on the beacon RSSI at the STA. Beacon frames are transmitted on 20 MHz * channels, while the Data frames usually use higher channel width. Therefore * their RSSIs may be different. Assuming there is a fixed gap between the TX * power limit of the STA defined by the Transmit Power Envelope element and the * TX power of the AP, the difference in the TX power of X MHz and Y MHz at the * STA equals to the difference at the AP, and the difference in the signal RSSI * at the STA. tx_pwr is a floating point number in the standard, but the error * of casting to int is trivial in comparing two BSSes. */ static int wpas_channel_width_tx_pwr(const u8 *ies, size_t ies_len, enum chan_width cw) { int offset = wpas_channel_width_offset(cw); const struct element *elem; int max_tx_power = TX_POWER_NO_CONSTRAINT, tx_pwr = 0; for_each_element_id(elem, WLAN_EID_TRANSMIT_POWER_ENVELOPE, ies, ies_len) { int max_tx_pwr_count; enum max_tx_pwr_interpretation tx_pwr_intrpn; enum reg_6g_client_type client_type; if (elem->datalen < 1) continue; /* * IEEE Std 802.11ax-2021, 9.4.2.161 (Transmit Power Envelope * element) defines Maximum Transmit Power Count (B0-B2), * Maximum Transmit Power Interpretation (B3-B5), and Maximum * Transmit Power Category (B6-B7). */ max_tx_pwr_count = elem->data[0] & 0x07; tx_pwr_intrpn = (elem->data[0] >> 3) & 0x07; client_type = (elem->data[0] >> 6) & 0x03; if (client_type != REG_DEFAULT_CLIENT) continue; if (tx_pwr_intrpn == LOCAL_EIRP || tx_pwr_intrpn == REGULATORY_CLIENT_EIRP) { int offs; max_tx_pwr_count = MIN(max_tx_pwr_count, 3); offs = MIN(offset, max_tx_pwr_count) + 1; if (elem->datalen <= offs) continue; tx_pwr = (signed char) elem->data[offs]; /* * Maximum Transmit Power subfield is encoded as an * 8-bit 2s complement signed integer in the range -64 * dBm to 63 dBm with a 0.5 dB step. 63.5 dBm means no * local maximum transmit power constraint. */ if (tx_pwr == 127) continue; tx_pwr /= 2; max_tx_power = MIN(max_tx_power, tx_pwr); } else if (tx_pwr_intrpn == LOCAL_EIRP_PSD || tx_pwr_intrpn == REGULATORY_CLIENT_EIRP_PSD) { if (elem->datalen < 2) continue; tx_pwr = (signed char) elem->data[1]; /* * Maximum Transmit PSD subfield is encoded as an 8-bit * 2s complement signed integer. -128 indicates that the * corresponding 20 MHz channel cannot be used for * transmission. +127 indicates that no maximum PSD * limit is specified for the corresponding 20 MHz * channel. */ if (tx_pwr == 127 || tx_pwr == -128) continue; /* * The Maximum Transmit PSD subfield indicates the * maximum transmit PSD for the 20 MHz channel. Suppose * the PSD value is X dBm/MHz, the TX power of N MHz is * X + 10*log10(N) = X + 10*log10(20) + 10*log10(N/20) = * X + 13 + 3*log2(N/20) */ tx_pwr = tx_pwr / 2 + 13 + offset * 3; max_tx_power = MIN(max_tx_power, tx_pwr); } } return max_tx_power; } /** * Estimate the RSSI bump of channel width |cw| with respect to 20 MHz channel. * If the TX power has no constraint, it is unable to estimate the RSSI bump. */ int wpas_channel_width_rssi_bump(const u8 *ies, size_t ies_len, enum chan_width cw) { int max_20mhz_tx_pwr = wpas_channel_width_tx_pwr(ies, ies_len, CHAN_WIDTH_20); int max_cw_tx_pwr = wpas_channel_width_tx_pwr(ies, ies_len, cw); return (max_20mhz_tx_pwr == TX_POWER_NO_CONSTRAINT || max_cw_tx_pwr == TX_POWER_NO_CONSTRAINT) ? 0 : (max_cw_tx_pwr - max_20mhz_tx_pwr); } int wpas_adjust_snr_by_chanwidth(const u8 *ies, size_t ies_len, enum chan_width max_cw, int snr) { int rssi_bump = wpas_channel_width_rssi_bump(ies, ies_len, max_cw); /* * The noise has uniform power spectral density (PSD) across the * frequency band, its power is proportional to the channel width. * Suppose the PSD of noise is X dBm/MHz, the noise power of N MHz is * X + 10*log10(N), and the noise power bump with respect to 20 MHz is * 10*log10(N) - 10*log10(20) = 10*log10(N/20) = 3*log2(N/20) */ int noise_bump = 3 * wpas_channel_width_offset(max_cw); return snr + rssi_bump - noise_bump; } /* Compare function for sorting scan results. Return >0 if @b is considered * better. */ static int wpa_scan_result_compar(const void *a, const void *b) { struct wpa_scan_res **_wa = (void *) a; struct wpa_scan_res **_wb = (void *) b; struct wpa_scan_res *wa = *_wa; struct wpa_scan_res *wb = *_wb; int wpa_a, wpa_b; int snr_a, snr_b, snr_a_full, snr_b_full; size_t ies_len; const u8 *rsne_a, *rsne_b; /* WPA/WPA2 support preferred */ wpa_a = wpa_scan_get_vendor_ie(wa, WPA_IE_VENDOR_TYPE) != NULL || wpa_scan_get_ie(wa, WLAN_EID_RSN) != NULL; wpa_b = wpa_scan_get_vendor_ie(wb, WPA_IE_VENDOR_TYPE) != NULL || wpa_scan_get_ie(wb, WLAN_EID_RSN) != NULL; if (wpa_b && !wpa_a) return 1; if (!wpa_b && wpa_a) return -1; /* privacy support preferred */ if ((wa->caps & IEEE80211_CAP_PRIVACY) == 0 && (wb->caps & IEEE80211_CAP_PRIVACY)) return 1; if ((wa->caps & IEEE80211_CAP_PRIVACY) && (wb->caps & IEEE80211_CAP_PRIVACY) == 0) return -1; if (wa->flags & wb->flags & WPA_SCAN_LEVEL_DBM) { /* * The scan result estimates SNR over 20 MHz, while Data frames * usually use wider channel width. The TX power and noise power * are both affected by the channel width. */ ies_len = wa->ie_len ? wa->ie_len : wa->beacon_ie_len; snr_a_full = wpas_adjust_snr_by_chanwidth((const u8 *) (wa + 1), ies_len, wa->max_cw, wa->snr); snr_a = MIN(snr_a_full, GREAT_SNR); ies_len = wb->ie_len ? wb->ie_len : wb->beacon_ie_len; snr_b_full = wpas_adjust_snr_by_chanwidth((const u8 *) (wb + 1), ies_len, wb->max_cw, wb->snr); snr_b = MIN(snr_b_full, GREAT_SNR); } else { /* Level is not in dBm, so we can't calculate * SNR. Just use raw level (units unknown). */ snr_a = snr_a_full = wa->level; snr_b = snr_b_full = wb->level; } /* If SNR of a SAE BSS is good or at least as high as the PSK BSS, * prefer SAE over PSK for mixed WPA3-Personal transition mode and * WPA2-Personal deployments */ rsne_a = wpa_scan_get_ie(wa, WLAN_EID_RSN); rsne_b = wpa_scan_get_ie(wb, WLAN_EID_RSN); if (rsne_a && rsne_b) { struct wpa_ie_data data; bool psk_a = false, psk_b = false, sae_a = false, sae_b = false; if (wpa_parse_wpa_ie_rsn(rsne_a, 2 + rsne_a[1], &data) == 0) { psk_a = wpa_key_mgmt_wpa_psk_no_sae(data.key_mgmt); sae_a = wpa_key_mgmt_sae(data.key_mgmt); } if (wpa_parse_wpa_ie_rsn(rsne_b, 2 + rsne_b[1], &data) == 0) { psk_b = wpa_key_mgmt_wpa_psk_no_sae(data.key_mgmt); sae_b = wpa_key_mgmt_sae(data.key_mgmt); } if (sae_a && !sae_b && psk_b && (snr_a >= GREAT_SNR || snr_a >= snr_b)) return -1; if (sae_b && !sae_a && psk_a && (snr_b >= GREAT_SNR || snr_b >= snr_a)) return 1; } /* If SNR is close, decide by max rate or frequency band. For cases * involving the 6 GHz band, use the throughput estimate irrespective * of the SNR difference since the LPI/VLP rules may result in * significant differences in SNR for cases where the estimated * throughput can be considerably higher with the lower SNR. */ if (snr_a && snr_b && (abs(snr_b - snr_a) < 7 || is_6ghz_freq(wa->freq) || is_6ghz_freq(wb->freq))) { if (wa->est_throughput != wb->est_throughput) return (int) wb->est_throughput - (int) wa->est_throughput; } if ((snr_a && snr_b && abs(snr_b - snr_a) < 5) || (wa->qual && wb->qual && abs(wb->qual - wa->qual) < 10)) { if (is_6ghz_freq(wa->freq) ^ is_6ghz_freq(wb->freq)) return is_6ghz_freq(wa->freq) ? -1 : 1; if (IS_5GHZ(wa->freq) ^ IS_5GHZ(wb->freq)) return IS_5GHZ(wa->freq) ? -1 : 1; } /* all things being equal, use SNR; if SNRs are * identical, use quality values since some drivers may only report * that value and leave the signal level zero */ if (snr_b_full == snr_a_full) return wb->qual - wa->qual; return snr_b_full - snr_a_full; } #ifdef CONFIG_WPS /* Compare function for sorting scan results when searching a WPS AP for * provisioning. Return >0 if @b is considered better. */ static int wpa_scan_result_wps_compar(const void *a, const void *b) { struct wpa_scan_res **_wa = (void *) a; struct wpa_scan_res **_wb = (void *) b; struct wpa_scan_res *wa = *_wa; struct wpa_scan_res *wb = *_wb; int uses_wps_a, uses_wps_b; struct wpabuf *wps_a, *wps_b; int res; /* Optimization - check WPS IE existence before allocated memory and * doing full reassembly. */ uses_wps_a = wpa_scan_get_vendor_ie(wa, WPS_IE_VENDOR_TYPE) != NULL; uses_wps_b = wpa_scan_get_vendor_ie(wb, WPS_IE_VENDOR_TYPE) != NULL; if (uses_wps_a && !uses_wps_b) return -1; if (!uses_wps_a && uses_wps_b) return 1; if (uses_wps_a && uses_wps_b) { wps_a = wpa_scan_get_vendor_ie_multi(wa, WPS_IE_VENDOR_TYPE); wps_b = wpa_scan_get_vendor_ie_multi(wb, WPS_IE_VENDOR_TYPE); res = wps_ap_priority_compar(wps_a, wps_b); wpabuf_free(wps_a); wpabuf_free(wps_b); if (res) return res; } /* * Do not use current AP security policy as a sorting criteria during * WPS provisioning step since the AP may get reconfigured at the * completion of provisioning. */ /* all things being equal, use signal level; if signal levels are * identical, use quality values since some drivers may only report * that value and leave the signal level zero */ if (wb->level == wa->level) return wb->qual - wa->qual; return wb->level - wa->level; } #endif /* CONFIG_WPS */ static void dump_scan_res(struct wpa_scan_results *scan_res) { #ifndef CONFIG_NO_STDOUT_DEBUG size_t i; if (scan_res->res == NULL || scan_res->num == 0) return; wpa_printf(MSG_EXCESSIVE, "Sorted scan results"); for (i = 0; i < scan_res->num; i++) { struct wpa_scan_res *r = scan_res->res[i]; u8 *pos; const u8 *ssid_ie, *ssid = NULL; size_t ssid_len = 0; ssid_ie = wpa_scan_get_ie(r, WLAN_EID_SSID); if (ssid_ie) { ssid = ssid_ie + 2; ssid_len = ssid_ie[1]; } if (r->flags & WPA_SCAN_LEVEL_DBM) { int noise_valid = !(r->flags & WPA_SCAN_NOISE_INVALID); wpa_printf(MSG_EXCESSIVE, MACSTR " ssid=%s freq=%d qual=%d noise=%d%s level=%d snr=%d%s flags=0x%x age=%u est=%u", MAC2STR(r->bssid), wpa_ssid_txt(ssid, ssid_len), r->freq, r->qual, r->noise, noise_valid ? "" : "~", r->level, r->snr, r->snr >= GREAT_SNR ? "*" : "", r->flags, r->age, r->est_throughput); } else { wpa_printf(MSG_EXCESSIVE, MACSTR " ssid=%s freq=%d qual=%d noise=%d level=%d flags=0x%x age=%u est=%u", MAC2STR(r->bssid), wpa_ssid_txt(ssid, ssid_len), r->freq, r->qual, r->noise, r->level, r->flags, r->age, r->est_throughput); } pos = (u8 *) (r + 1); if (r->ie_len) wpa_hexdump(MSG_EXCESSIVE, "IEs", pos, r->ie_len); pos += r->ie_len; if (r->beacon_ie_len) wpa_hexdump(MSG_EXCESSIVE, "Beacon IEs", pos, r->beacon_ie_len); } #endif /* CONFIG_NO_STDOUT_DEBUG */ } /** * wpa_supplicant_filter_bssid_match - Is the specified BSSID allowed * @wpa_s: Pointer to wpa_supplicant data * @bssid: BSSID to check * Returns: 0 if the BSSID is filtered or 1 if not * * This function is used to filter out specific BSSIDs from scan reslts mainly * for testing purposes (SET bssid_filter ctrl_iface command). */ int wpa_supplicant_filter_bssid_match(struct wpa_supplicant *wpa_s, const u8 *bssid) { size_t i; if (wpa_s->bssid_filter == NULL) return 1; for (i = 0; i < wpa_s->bssid_filter_count; i++) { if (ether_addr_equal(wpa_s->bssid_filter + i * ETH_ALEN, bssid)) return 1; } return 0; } static void filter_scan_res(struct wpa_supplicant *wpa_s, struct wpa_scan_results *res) { size_t i, j; if (wpa_s->bssid_filter == NULL) return; for (i = 0, j = 0; i < res->num; i++) { if (wpa_supplicant_filter_bssid_match(wpa_s, res->res[i]->bssid)) { res->res[j++] = res->res[i]; } else { os_free(res->res[i]); res->res[i] = NULL; } } if (res->num != j) { wpa_printf(MSG_DEBUG, "Filtered out %d scan results", (int) (res->num - j)); res->num = j; } } void scan_snr(struct wpa_scan_res *res) { if (res->flags & WPA_SCAN_NOISE_INVALID) { res->noise = is_6ghz_freq(res->freq) ? DEFAULT_NOISE_FLOOR_6GHZ : (IS_5GHZ(res->freq) ? DEFAULT_NOISE_FLOOR_5GHZ : DEFAULT_NOISE_FLOOR_2GHZ); } if (res->flags & WPA_SCAN_LEVEL_DBM) { res->snr = res->level - res->noise; } else { /* Level is not in dBm, so we can't calculate * SNR. Just use raw level (units unknown). */ res->snr = res->level; } } /* Minimum SNR required to achieve a certain bitrate. */ struct minsnr_bitrate_entry { int minsnr; unsigned int bitrate; /* in Mbps */ }; /* VHT needs to be enabled in order to achieve MCS8 and MCS9 rates. */ static const int vht_mcs = 8; static const struct minsnr_bitrate_entry vht20_table[] = { { 0, 0 }, { 2, 6500 }, /* HT20 MCS0 */ { 5, 13000 }, /* HT20 MCS1 */ { 9, 19500 }, /* HT20 MCS2 */ { 11, 26000 }, /* HT20 MCS3 */ { 15, 39000 }, /* HT20 MCS4 */ { 18, 52000 }, /* HT20 MCS5 */ { 20, 58500 }, /* HT20 MCS6 */ { 25, 65000 }, /* HT20 MCS7 */ { 29, 78000 }, /* VHT20 MCS8 */ { -1, 78000 } /* SNR > 29 */ }; static const struct minsnr_bitrate_entry vht40_table[] = { { 0, 0 }, { 5, 13500 }, /* HT40 MCS0 */ { 8, 27000 }, /* HT40 MCS1 */ { 12, 40500 }, /* HT40 MCS2 */ { 14, 54000 }, /* HT40 MCS3 */ { 18, 81000 }, /* HT40 MCS4 */ { 21, 108000 }, /* HT40 MCS5 */ { 23, 121500 }, /* HT40 MCS6 */ { 28, 135000 }, /* HT40 MCS7 */ { 32, 162000 }, /* VHT40 MCS8 */ { 34, 180000 }, /* VHT40 MCS9 */ { -1, 180000 } /* SNR > 34 */ }; static const struct minsnr_bitrate_entry vht80_table[] = { { 0, 0 }, { 8, 29300 }, /* VHT80 MCS0 */ { 11, 58500 }, /* VHT80 MCS1 */ { 15, 87800 }, /* VHT80 MCS2 */ { 17, 117000 }, /* VHT80 MCS3 */ { 21, 175500 }, /* VHT80 MCS4 */ { 24, 234000 }, /* VHT80 MCS5 */ { 26, 263300 }, /* VHT80 MCS6 */ { 31, 292500 }, /* VHT80 MCS7 */ { 35, 351000 }, /* VHT80 MCS8 */ { 37, 390000 }, /* VHT80 MCS9 */ { -1, 390000 } /* SNR > 37 */ }; static const struct minsnr_bitrate_entry vht160_table[] = { { 0, 0 }, { 11, 58500 }, /* VHT160 MCS0 */ { 14, 117000 }, /* VHT160 MCS1 */ { 18, 175500 }, /* VHT160 MCS2 */ { 20, 234000 }, /* VHT160 MCS3 */ { 24, 351000 }, /* VHT160 MCS4 */ { 27, 468000 }, /* VHT160 MCS5 */ { 29, 526500 }, /* VHT160 MCS6 */ { 34, 585000 }, /* VHT160 MCS7 */ { 38, 702000 }, /* VHT160 MCS8 */ { 40, 780000 }, /* VHT160 MCS9 */ { -1, 780000 } /* SNR > 37 */ }; /* EHT needs to be enabled in order to achieve MCS12 and MCS13 rates. */ #define EHT_MCS 12 static const struct minsnr_bitrate_entry he20_table[] = { { 0, 0 }, { 2, 8600 }, /* HE20 MCS0 */ { 5, 17200 }, /* HE20 MCS1 */ { 9, 25800 }, /* HE20 MCS2 */ { 11, 34400 }, /* HE20 MCS3 */ { 15, 51600 }, /* HE20 MCS4 */ { 18, 68800 }, /* HE20 MCS5 */ { 20, 77400 }, /* HE20 MCS6 */ { 25, 86000 }, /* HE20 MCS7 */ { 29, 103200 }, /* HE20 MCS8 */ { 31, 114700 }, /* HE20 MCS9 */ { 34, 129000 }, /* HE20 MCS10 */ { 36, 143400 }, /* HE20 MCS11 */ { 39, 154900 }, /* EHT20 MCS12 */ { 42, 172100 }, /* EHT20 MCS13 */ { -1, 172100 } /* SNR > 42 */ }; static const struct minsnr_bitrate_entry he40_table[] = { { 0, 0 }, { 5, 17200 }, /* HE40 MCS0 */ { 8, 34400 }, /* HE40 MCS1 */ { 12, 51600 }, /* HE40 MCS2 */ { 14, 68800 }, /* HE40 MCS3 */ { 18, 103200 }, /* HE40 MCS4 */ { 21, 137600 }, /* HE40 MCS5 */ { 23, 154900 }, /* HE40 MCS6 */ { 28, 172100 }, /* HE40 MCS7 */ { 32, 206500 }, /* HE40 MCS8 */ { 34, 229400 }, /* HE40 MCS9 */ { 37, 258100 }, /* HE40 MCS10 */ { 39, 286800 }, /* HE40 MCS11 */ { 42, 309500 }, /* EHT40 MCS12 */ { 45, 344100 }, /* EHT40 MCS13 */ { -1, 344100 } /* SNR > 45 */ }; static const struct minsnr_bitrate_entry he80_table[] = { { 0, 0 }, { 8, 36000 }, /* HE80 MCS0 */ { 11, 72100 }, /* HE80 MCS1 */ { 15, 108100 }, /* HE80 MCS2 */ { 17, 144100 }, /* HE80 MCS3 */ { 21, 216200 }, /* HE80 MCS4 */ { 24, 288200 }, /* HE80 MCS5 */ { 26, 324300 }, /* HE80 MCS6 */ { 31, 360300 }, /* HE80 MCS7 */ { 35, 432400 }, /* HE80 MCS8 */ { 37, 480400 }, /* HE80 MCS9 */ { 40, 540400 }, /* HE80 MCS10 */ { 42, 600500 }, /* HE80 MCS11 */ { 45, 648500 }, /* EHT80 MCS12 */ { 48, 720600 }, /* EHT80 MCS13 */ { -1, 720600 } /* SNR > 48 */ }; static const struct minsnr_bitrate_entry he160_table[] = { { 0, 0 }, { 11, 72100 }, /* HE160 MCS0 */ { 14, 144100 }, /* HE160 MCS1 */ { 18, 216200 }, /* HE160 MCS2 */ { 20, 288200 }, /* HE160 MCS3 */ { 24, 432400 }, /* HE160 MCS4 */ { 27, 576500 }, /* HE160 MCS5 */ { 29, 648500 }, /* HE160 MCS6 */ { 34, 720600 }, /* HE160 MCS7 */ { 38, 864700 }, /* HE160 MCS8 */ { 40, 960800 }, /* HE160 MCS9 */ { 43, 1080900 }, /* HE160 MCS10 */ { 45, 1201000 }, /* HE160 MCS11 */ { 48, 1297100 }, /* EHT160 MCS12 */ { 51, 1441200 }, /* EHT160 MCS13 */ { -1, 1441200 } /* SNR > 51 */ }; /* See IEEE P802.11be/D2.0, Table 36-86: EHT-MCSs for 4x996-tone RU, NSS,u = 1 */ static const struct minsnr_bitrate_entry eht320_table[] = { { 0, 0 }, { 14, 144100 }, /* EHT320 MCS0 */ { 17, 288200 }, /* EHT320 MCS1 */ { 21, 432400 }, /* EHT320 MCS2 */ { 23, 576500 }, /* EHT320 MCS3 */ { 27, 864700 }, /* EHT320 MCS4 */ { 30, 1152900 }, /* EHT320 MCS5 */ { 32, 1297100 }, /* EHT320 MCS6 */ { 37, 1441200 }, /* EHT320 MCS7 */ { 41, 1729400 }, /* EHT320 MCS8 */ { 43, 1921500 }, /* EHT320 MCS9 */ { 46, 2161800 }, /* EHT320 MCS10 */ { 48, 2401900 }, /* EHT320 MCS11 */ { 51, 2594100 }, /* EHT320 MCS12 */ { 54, 2882400 }, /* EHT320 MCS13 */ { -1, 2882400 } /* SNR > 54 */ }; static unsigned int interpolate_rate(int snr, int snr0, int snr1, int rate0, int rate1) { return rate0 + (snr - snr0) * (rate1 - rate0) / (snr1 - snr0); } static unsigned int max_rate(const struct minsnr_bitrate_entry table[], int snr, bool vht) { const struct minsnr_bitrate_entry *prev, *entry = table; while ((entry->minsnr != -1) && (snr >= entry->minsnr) && (vht || entry - table <= vht_mcs)) entry++; if (entry == table) return entry->bitrate; prev = entry - 1; if (entry->minsnr == -1 || (!vht && entry - table > vht_mcs)) return prev->bitrate; return interpolate_rate(snr, prev->minsnr, entry->minsnr, prev->bitrate, entry->bitrate); } static unsigned int max_ht20_rate(int snr, bool vht) { return max_rate(vht20_table, snr, vht); } static unsigned int max_ht40_rate(int snr, bool vht) { return max_rate(vht40_table, snr, vht); } static unsigned int max_vht80_rate(int snr) { return max_rate(vht80_table, snr, 1); } static unsigned int max_vht160_rate(int snr) { return max_rate(vht160_table, snr, 1); } static unsigned int max_he_eht_rate(const struct minsnr_bitrate_entry table[], int snr, bool eht) { const struct minsnr_bitrate_entry *prev, *entry = table; while (entry->minsnr != -1 && snr >= entry->minsnr && (eht || entry - table <= EHT_MCS)) entry++; if (entry == table) return 0; prev = entry - 1; if (entry->minsnr == -1 || (!eht && entry - table > EHT_MCS)) return prev->bitrate; return interpolate_rate(snr, prev->minsnr, entry->minsnr, prev->bitrate, entry->bitrate); } unsigned int wpas_get_est_tpt(const struct wpa_supplicant *wpa_s, const u8 *ies, size_t ies_len, int rate, int snr, int freq, enum chan_width *max_cw) { struct hostapd_hw_modes *hw_mode; unsigned int est, tmp; const u8 *ie; /* * No need to apply a bump to the noise here because the * minsnr_bitrate_entry tables are based on MCS tables where this has * been taken into account. */ int adjusted_snr; bool ht40 = false, vht80 = false, vht160 = false; /* Limit based on estimated SNR */ if (rate > 1 * 2 && snr < 1) rate = 1 * 2; else if (rate > 2 * 2 && snr < 4) rate = 2 * 2; else if (rate > 6 * 2 && snr < 5) rate = 6 * 2; else if (rate > 9 * 2 && snr < 6) rate = 9 * 2; else if (rate > 12 * 2 && snr < 7) rate = 12 * 2; else if (rate > 12 * 2 && snr < 8) rate = 14 * 2; else if (rate > 12 * 2 && snr < 9) rate = 16 * 2; else if (rate > 18 * 2 && snr < 10) rate = 18 * 2; else if (rate > 24 * 2 && snr < 11) rate = 24 * 2; else if (rate > 24 * 2 && snr < 12) rate = 27 * 2; else if (rate > 24 * 2 && snr < 13) rate = 30 * 2; else if (rate > 24 * 2 && snr < 14) rate = 33 * 2; else if (rate > 36 * 2 && snr < 15) rate = 36 * 2; else if (rate > 36 * 2 && snr < 16) rate = 39 * 2; else if (rate > 36 * 2 && snr < 17) rate = 42 * 2; else if (rate > 36 * 2 && snr < 18) rate = 45 * 2; else if (rate > 48 * 2 && snr < 19) rate = 48 * 2; else if (rate > 48 * 2 && snr < 20) rate = 51 * 2; else if (rate > 54 * 2 && snr < 21) rate = 54 * 2; est = rate * 500; hw_mode = get_mode_with_freq(wpa_s->hw.modes, wpa_s->hw.num_modes, freq); if (hw_mode && hw_mode->ht_capab) { ie = get_ie(ies, ies_len, WLAN_EID_HT_CAP); if (ie) { *max_cw = CHAN_WIDTH_20; tmp = max_ht20_rate(snr, false); if (tmp > est) est = tmp; } } ie = get_ie(ies, ies_len, WLAN_EID_HT_OPERATION); if (ie && ie[1] >= 2 && (ie[3] & HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK)) ht40 = true; if (hw_mode && (hw_mode->ht_capab & HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET)) { if (ht40) { *max_cw = CHAN_WIDTH_40; adjusted_snr = snr + wpas_channel_width_rssi_bump(ies, ies_len, CHAN_WIDTH_40); tmp = max_ht40_rate(adjusted_snr, false); if (tmp > est) est = tmp; } } /* Determine VHT BSS bandwidth based on IEEE Std 802.11-2020, * Table 11-23 (VHT BSS bandwidth) */ ie = get_ie(ies, ies_len, WLAN_EID_VHT_OPERATION); if (ie && ie[1] >= 3) { u8 cw = ie[2] & VHT_OPMODE_CHANNEL_WIDTH_MASK; u8 seg0 = ie[3]; u8 seg1 = ie[4]; if (cw) vht80 = true; if (cw == 2 || (cw == 3 && (seg1 > 0 && abs(seg1 - seg0) == 16))) vht160 = true; if (cw == 1 && ((seg1 > 0 && abs(seg1 - seg0) == 8) || (seg1 > 0 && abs(seg1 - seg0) == 16))) vht160 = true; } if (hw_mode && hw_mode->vht_capab) { /* Use +1 to assume VHT is always faster than HT */ ie = get_ie(ies, ies_len, WLAN_EID_VHT_CAP); if (ie) { if (*max_cw == CHAN_WIDTH_UNKNOWN) *max_cw = CHAN_WIDTH_20; tmp = max_ht20_rate(snr, true) + 1; if (tmp > est) est = tmp; if (ht40) { *max_cw = CHAN_WIDTH_40; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_40); tmp = max_ht40_rate(adjusted_snr, true) + 1; if (tmp > est) est = tmp; } if (vht80) { *max_cw = CHAN_WIDTH_80; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_80); tmp = max_vht80_rate(adjusted_snr) + 1; if (tmp > est) est = tmp; } if (vht160 && (hw_mode->vht_capab & (VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))) { *max_cw = CHAN_WIDTH_160; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_160); tmp = max_vht160_rate(adjusted_snr) + 1; if (tmp > est) est = tmp; } } } if (hw_mode && hw_mode->he_capab[IEEE80211_MODE_INFRA].he_supported) { /* Use +2 to assume HE is always faster than HT/VHT */ struct ieee80211_he_capabilities *he; struct ieee80211_eht_capabilities *eht; struct he_capabilities *own_he; u8 cw, boost = 2; const u8 *eht_ie; bool is_eht = false; ie = get_ie_ext(ies, ies_len, WLAN_EID_EXT_HE_CAPABILITIES); if (!ie || (ie[1] < 1 + IEEE80211_HE_CAPAB_MIN_LEN)) return est; he = (struct ieee80211_he_capabilities *) &ie[3]; own_he = &hw_mode->he_capab[IEEE80211_MODE_INFRA]; /* Use +3 to assume EHT is always faster than HE */ if (hw_mode->eht_capab[IEEE80211_MODE_INFRA].eht_supported) { eht_ie = get_ie_ext(ies, ies_len, WLAN_EID_EXT_EHT_CAPABILITIES); if (eht_ie && (eht_ie[1] >= 1 + IEEE80211_EHT_CAPAB_MIN_LEN)) { is_eht = true; boost = 3; } } if (*max_cw == CHAN_WIDTH_UNKNOWN) *max_cw = CHAN_WIDTH_20; tmp = max_he_eht_rate(he20_table, snr, is_eht) + boost; if (tmp > est) est = tmp; cw = he->he_phy_capab_info[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX] & own_he->phy_cap[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX]; if ((cw & (IS_2P4GHZ(freq) ? HE_PHYCAP_CHANNEL_WIDTH_SET_40MHZ_IN_2G : HE_PHYCAP_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)) && ht40) { if (*max_cw == CHAN_WIDTH_UNKNOWN || *max_cw < CHAN_WIDTH_40) *max_cw = CHAN_WIDTH_40; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_40); tmp = max_he_eht_rate(he40_table, adjusted_snr, is_eht) + boost; if (tmp > est) est = tmp; } if (!IS_2P4GHZ(freq) && (cw & HE_PHYCAP_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) && (!IS_5GHZ(freq) || vht80)) { if (*max_cw == CHAN_WIDTH_UNKNOWN || *max_cw < CHAN_WIDTH_80) *max_cw = CHAN_WIDTH_80; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_80); tmp = max_he_eht_rate(he80_table, adjusted_snr, is_eht) + boost; if (tmp > est) est = tmp; } if (!IS_2P4GHZ(freq) && (cw & (HE_PHYCAP_CHANNEL_WIDTH_SET_160MHZ_IN_5G | HE_PHYCAP_CHANNEL_WIDTH_SET_80PLUS80MHZ_IN_5G)) && (!IS_5GHZ(freq) || vht160)) { if (*max_cw == CHAN_WIDTH_UNKNOWN || *max_cw < CHAN_WIDTH_160) *max_cw = CHAN_WIDTH_160; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_160); tmp = max_he_eht_rate(he160_table, adjusted_snr, is_eht) + boost; if (tmp > est) est = tmp; } if (!is_eht) return est; eht = (struct ieee80211_eht_capabilities *) &eht_ie[3]; if (is_6ghz_freq(freq) && (eht->phy_cap[EHT_PHYCAP_320MHZ_IN_6GHZ_SUPPORT_IDX] & EHT_PHYCAP_320MHZ_IN_6GHZ_SUPPORT_MASK)) { if (*max_cw == CHAN_WIDTH_UNKNOWN || *max_cw < CHAN_WIDTH_320) *max_cw = CHAN_WIDTH_320; adjusted_snr = snr + wpas_channel_width_rssi_bump( ies, ies_len, CHAN_WIDTH_320); tmp = max_he_eht_rate(eht320_table, adjusted_snr, true); if (tmp > est) est = tmp; } } return est; } void scan_est_throughput(struct wpa_supplicant *wpa_s, struct wpa_scan_res *res) { int rate; /* max legacy rate in 500 kb/s units */ int snr = res->snr; const u8 *ies = (const void *) (res + 1); size_t ie_len = res->ie_len; if (res->est_throughput) return; /* Get maximum legacy rate */ rate = wpa_scan_get_max_rate(res); if (!ie_len) ie_len = res->beacon_ie_len; res->est_throughput = wpas_get_est_tpt(wpa_s, ies, ie_len, rate, snr, res->freq, &res->max_cw); /* TODO: channel utilization and AP load (e.g., from AP Beacon) */ } /** * wpa_supplicant_get_scan_results - Get scan results * @wpa_s: Pointer to wpa_supplicant data * @info: Information about what was scanned or %NULL if not available * @new_scan: Whether a new scan was performed * Returns: Scan results, %NULL on failure * * This function request the current scan results from the driver and updates * the local BSS list wpa_s->bss. The caller is responsible for freeing the * results with wpa_scan_results_free(). */ struct wpa_scan_results * wpa_supplicant_get_scan_results(struct wpa_supplicant *wpa_s, struct scan_info *info, int new_scan) { struct wpa_scan_results *scan_res; size_t i; int (*compar)(const void *, const void *) = wpa_scan_result_compar; scan_res = wpa_drv_get_scan_results2(wpa_s); if (scan_res == NULL) { wpa_dbg(wpa_s, MSG_DEBUG, "Failed to get scan results"); return NULL; } if (scan_res->fetch_time.sec == 0) { /* * Make sure we have a valid timestamp if the driver wrapper * does not set this. */ os_get_reltime(&scan_res->fetch_time); } filter_scan_res(wpa_s, scan_res); for (i = 0; i < scan_res->num; i++) { struct wpa_scan_res *scan_res_item = scan_res->res[i]; scan_snr(scan_res_item); scan_est_throughput(wpa_s, scan_res_item); } #ifdef CONFIG_WPS if (wpas_wps_searching(wpa_s)) { wpa_dbg(wpa_s, MSG_DEBUG, "WPS: Order scan results with WPS " "provisioning rules"); compar = wpa_scan_result_wps_compar; } #endif /* CONFIG_WPS */ if (scan_res->res) { qsort(scan_res->res, scan_res->num, sizeof(struct wpa_scan_res *), compar); } dump_scan_res(scan_res); if (wpa_s->ignore_post_flush_scan_res) { /* FLUSH command aborted an ongoing scan and these are the * results from the aborted scan. Do not process the results to * maintain flushed state. */ wpa_dbg(wpa_s, MSG_DEBUG, "Do not update BSS table based on pending post-FLUSH scan results"); wpa_s->ignore_post_flush_scan_res = 0; return scan_res; } wpa_bss_update_start(wpa_s); for (i = 0; i < scan_res->num; i++) wpa_bss_update_scan_res(wpa_s, scan_res->res[i], &scan_res->fetch_time); wpa_bss_update_end(wpa_s, info, new_scan); return scan_res; } /** * wpa_supplicant_update_scan_results - Update scan results from the driver * @wpa_s: Pointer to wpa_supplicant data * Returns: 0 on success, -1 on failure * * This function updates the BSS table within wpa_supplicant based on the * currently available scan results from the driver without requesting a new * scan. This is used in cases where the driver indicates an association * (including roaming within ESS) and wpa_supplicant does not yet have the * needed information to complete the connection (e.g., to perform validation * steps in 4-way handshake). */ int wpa_supplicant_update_scan_results(struct wpa_supplicant *wpa_s) { struct wpa_scan_results *scan_res; scan_res = wpa_supplicant_get_scan_results(wpa_s, NULL, 0); if (scan_res == NULL) return -1; wpa_scan_results_free(scan_res); return 0; } /** * scan_only_handler - Reports scan results */ void scan_only_handler(struct wpa_supplicant *wpa_s, struct wpa_scan_results *scan_res) { wpa_dbg(wpa_s, MSG_DEBUG, "Scan-only results received"); if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && wpa_s->manual_scan_use_id && wpa_s->own_scan_running) { wpa_msg_ctrl(wpa_s, MSG_INFO, WPA_EVENT_SCAN_RESULTS "id=%u", wpa_s->manual_scan_id); wpa_s->manual_scan_use_id = 0; } else { wpa_msg_ctrl(wpa_s, MSG_INFO, WPA_EVENT_SCAN_RESULTS); } wpas_notify_scan_results(wpa_s); wpas_notify_scan_done(wpa_s, 1); if (wpa_s->scan_work) { struct wpa_radio_work *work = wpa_s->scan_work; wpa_s->scan_work = NULL; radio_work_done(work); } if (wpa_s->wpa_state == WPA_SCANNING) wpa_supplicant_set_state(wpa_s, wpa_s->scan_prev_wpa_state); } int wpas_scan_scheduled(struct wpa_supplicant *wpa_s) { return eloop_is_timeout_registered(wpa_supplicant_scan, wpa_s, NULL); } struct wpa_driver_scan_params * wpa_scan_clone_params(const struct wpa_driver_scan_params *src) { struct wpa_driver_scan_params *params; size_t i; u8 *n; params = os_zalloc(sizeof(*params)); if (params == NULL) return NULL; for (i = 0; i < src->num_ssids; i++) { if (src->ssids[i].ssid) { n = os_memdup(src->ssids[i].ssid, src->ssids[i].ssid_len); if (n == NULL) goto failed; params->ssids[i].ssid = n; params->ssids[i].ssid_len = src->ssids[i].ssid_len; } } params->num_ssids = src->num_ssids; if (src->extra_ies) { n = os_memdup(src->extra_ies, src->extra_ies_len); if (n == NULL) goto failed; params->extra_ies = n; params->extra_ies_len = src->extra_ies_len; } if (src->freqs) { int len = int_array_len(src->freqs); params->freqs = os_memdup(src->freqs, (len + 1) * sizeof(int)); if (params->freqs == NULL) goto failed; } if (src->filter_ssids) { params->filter_ssids = os_memdup(src->filter_ssids, sizeof(*params->filter_ssids) * src->num_filter_ssids); if (params->filter_ssids == NULL) goto failed; params->num_filter_ssids = src->num_filter_ssids; } params->filter_rssi = src->filter_rssi; params->p2p_probe = src->p2p_probe; params->only_new_results = src->only_new_results; params->low_priority = src->low_priority; params->duration = src->duration; params->duration_mandatory = src->duration_mandatory; params->oce_scan = src->oce_scan; if (src->sched_scan_plans_num > 0) { params->sched_scan_plans = os_memdup(src->sched_scan_plans, sizeof(*src->sched_scan_plans) * src->sched_scan_plans_num); if (!params->sched_scan_plans) goto failed; params->sched_scan_plans_num = src->sched_scan_plans_num; } if (src->mac_addr_rand && wpa_setup_mac_addr_rand_params(params, src->mac_addr)) goto failed; if (src->bssid) { u8 *bssid; bssid = os_memdup(src->bssid, ETH_ALEN); if (!bssid) goto failed; params->bssid = bssid; } params->relative_rssi_set = src->relative_rssi_set; params->relative_rssi = src->relative_rssi; params->relative_adjust_band = src->relative_adjust_band; params->relative_adjust_rssi = src->relative_adjust_rssi; params->p2p_include_6ghz = src->p2p_include_6ghz; params->non_coloc_6ghz = src->non_coloc_6ghz; params->min_probe_req_content = src->min_probe_req_content; return params; failed: wpa_scan_free_params(params); return NULL; } void wpa_scan_free_params(struct wpa_driver_scan_params *params) { size_t i; if (params == NULL) return; for (i = 0; i < params->num_ssids; i++) os_free((u8 *) params->ssids[i].ssid); os_free((u8 *) params->extra_ies); os_free(params->freqs); os_free(params->filter_ssids); os_free(params->sched_scan_plans); /* * Note: params->mac_addr_mask points to same memory allocation and * must not be freed separately. */ os_free((u8 *) params->mac_addr); os_free((u8 *) params->bssid); os_free(params); } int wpas_start_pno(struct wpa_supplicant *wpa_s) { int ret; size_t prio, i, num_ssid, num_match_ssid; struct wpa_ssid *ssid; struct wpa_driver_scan_params params; struct sched_scan_plan scan_plan; unsigned int max_sched_scan_ssids; if (!wpa_s->sched_scan_supported) return -1; if (wpa_s->max_sched_scan_ssids > WPAS_MAX_SCAN_SSIDS) max_sched_scan_ssids = WPAS_MAX_SCAN_SSIDS; else max_sched_scan_ssids = wpa_s->max_sched_scan_ssids; if (max_sched_scan_ssids < 1) return -1; if (wpa_s->pno || wpa_s->pno_sched_pending) return 0; if ((wpa_s->wpa_state > WPA_SCANNING) && (wpa_s->wpa_state < WPA_COMPLETED)) { wpa_printf(MSG_ERROR, "PNO: In assoc process"); return -EAGAIN; } if (wpa_s->wpa_state == WPA_SCANNING) { wpa_supplicant_cancel_scan(wpa_s); if (wpa_s->sched_scanning) { wpa_printf(MSG_DEBUG, "Schedule PNO on completion of " "ongoing sched scan"); wpa_supplicant_cancel_sched_scan(wpa_s); wpa_s->pno_sched_pending = 1; return 0; } } if (wpa_s->sched_scan_stop_req) { wpa_printf(MSG_DEBUG, "Schedule PNO after previous sched scan has stopped"); wpa_s->pno_sched_pending = 1; return 0; } os_memset(¶ms, 0, sizeof(params)); num_ssid = num_match_ssid = 0; ssid = wpa_s->conf->ssid; while (ssid) { if (!wpas_network_disabled(wpa_s, ssid)) { num_match_ssid++; if (ssid->scan_ssid) num_ssid++; } ssid = ssid->next; } if (num_match_ssid == 0) { wpa_printf(MSG_DEBUG, "PNO: No configured SSIDs"); return -1; } if (num_match_ssid > num_ssid) { params.num_ssids++; /* wildcard */ num_ssid++; } if (num_ssid > max_sched_scan_ssids) { wpa_printf(MSG_DEBUG, "PNO: Use only the first %u SSIDs from " "%u", max_sched_scan_ssids, (unsigned int) num_ssid); num_ssid = max_sched_scan_ssids; } if (num_match_ssid > wpa_s->max_match_sets) { num_match_ssid = wpa_s->max_match_sets; wpa_dbg(wpa_s, MSG_DEBUG, "PNO: Too many SSIDs to match"); } params.filter_ssids = os_calloc(num_match_ssid, sizeof(struct wpa_driver_scan_filter)); if (params.filter_ssids == NULL) return -1; i = 0; prio = 0; ssid = wpa_s->conf->pssid[prio]; while (ssid) { if (!wpas_network_disabled(wpa_s, ssid)) { if (ssid->scan_ssid && params.num_ssids < num_ssid) { params.ssids[params.num_ssids].ssid = ssid->ssid; params.ssids[params.num_ssids].ssid_len = ssid->ssid_len; params.num_ssids++; } os_memcpy(params.filter_ssids[i].ssid, ssid->ssid, ssid->ssid_len); params.filter_ssids[i].ssid_len = ssid->ssid_len; params.num_filter_ssids++; i++; if (i == num_match_ssid) break; } if (ssid->pnext) ssid = ssid->pnext; else if (prio + 1 == wpa_s->conf->num_prio) break; else ssid = wpa_s->conf->pssid[++prio]; } if (wpa_s->conf->filter_rssi) params.filter_rssi = wpa_s->conf->filter_rssi; if (wpa_s->sched_scan_plans_num) { params.sched_scan_plans = wpa_s->sched_scan_plans; params.sched_scan_plans_num = wpa_s->sched_scan_plans_num; } else { /* Set one scan plan that will run infinitely */ if (wpa_s->conf->sched_scan_interval) scan_plan.interval = wpa_s->conf->sched_scan_interval; else scan_plan.interval = 10; scan_plan.iterations = 0; params.sched_scan_plans = &scan_plan; params.sched_scan_plans_num = 1; } params.sched_scan_start_delay = wpa_s->conf->sched_scan_start_delay; if (params.freqs == NULL && wpa_s->manual_sched_scan_freqs) { wpa_dbg(wpa_s, MSG_DEBUG, "Limit sched scan to specified channels"); params.freqs = wpa_s->manual_sched_scan_freqs; } if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_PNO) && wpa_s->wpa_state <= WPA_SCANNING) wpa_setup_mac_addr_rand_params(¶ms, wpa_s->mac_addr_pno); wpa_scan_set_relative_rssi_params(wpa_s, ¶ms); ret = wpa_supplicant_start_sched_scan(wpa_s, ¶ms); os_free(params.filter_ssids); os_free(params.mac_addr); if (ret == 0) wpa_s->pno = 1; else wpa_msg(wpa_s, MSG_ERROR, "Failed to schedule PNO"); return ret; } int wpas_stop_pno(struct wpa_supplicant *wpa_s) { int ret = 0; if (!wpa_s->pno) return 0; ret = wpa_supplicant_stop_sched_scan(wpa_s); wpa_s->sched_scan_stop_req = 1; wpa_s->pno = 0; wpa_s->pno_sched_pending = 0; if (wpa_s->wpa_state == WPA_SCANNING) wpa_supplicant_req_scan(wpa_s, 0, 0); return ret; } void wpas_mac_addr_rand_scan_clear(struct wpa_supplicant *wpa_s, unsigned int type) { type &= MAC_ADDR_RAND_ALL; wpa_s->mac_addr_rand_enable &= ~type; if (type & MAC_ADDR_RAND_SCAN) { os_free(wpa_s->mac_addr_scan); wpa_s->mac_addr_scan = NULL; } if (type & MAC_ADDR_RAND_SCHED_SCAN) { os_free(wpa_s->mac_addr_sched_scan); wpa_s->mac_addr_sched_scan = NULL; } if (type & MAC_ADDR_RAND_PNO) { os_free(wpa_s->mac_addr_pno); wpa_s->mac_addr_pno = NULL; } } int wpas_mac_addr_rand_scan_set(struct wpa_supplicant *wpa_s, unsigned int type, const u8 *addr, const u8 *mask) { u8 *tmp = NULL; if ((wpa_s->mac_addr_rand_supported & type) != type ) { wpa_printf(MSG_INFO, "scan: MAC randomization type %u != supported=%u", type, wpa_s->mac_addr_rand_supported); return -1; } wpas_mac_addr_rand_scan_clear(wpa_s, type); if (addr) { tmp = os_malloc(2 * ETH_ALEN); if (!tmp) return -1; os_memcpy(tmp, addr, ETH_ALEN); os_memcpy(tmp + ETH_ALEN, mask, ETH_ALEN); } if (type == MAC_ADDR_RAND_SCAN) { wpa_s->mac_addr_scan = tmp; } else if (type == MAC_ADDR_RAND_SCHED_SCAN) { wpa_s->mac_addr_sched_scan = tmp; } else if (type == MAC_ADDR_RAND_PNO) { wpa_s->mac_addr_pno = tmp; } else { wpa_printf(MSG_INFO, "scan: Invalid MAC randomization type=0x%x", type); os_free(tmp); return -1; } wpa_s->mac_addr_rand_enable |= type; return 0; } int wpas_mac_addr_rand_scan_get_mask(struct wpa_supplicant *wpa_s, unsigned int type, u8 *mask) { const u8 *to_copy; if ((wpa_s->mac_addr_rand_enable & type) != type) return -1; if (type == MAC_ADDR_RAND_SCAN) { to_copy = wpa_s->mac_addr_scan; } else if (type == MAC_ADDR_RAND_SCHED_SCAN) { to_copy = wpa_s->mac_addr_sched_scan; } else if (type == MAC_ADDR_RAND_PNO) { to_copy = wpa_s->mac_addr_pno; } else { wpa_printf(MSG_DEBUG, "scan: Invalid MAC randomization type=0x%x", type); return -1; } os_memcpy(mask, to_copy + ETH_ALEN, ETH_ALEN); return 0; } int wpas_abort_ongoing_scan(struct wpa_supplicant *wpa_s) { struct wpa_radio_work *work; struct wpa_radio *radio = wpa_s->radio; dl_list_for_each(work, &radio->work, struct wpa_radio_work, list) { if (work->wpa_s != wpa_s || !work->started || (os_strcmp(work->type, "scan") != 0 && os_strcmp(work->type, "p2p-scan") != 0)) continue; wpa_dbg(wpa_s, MSG_DEBUG, "Abort an ongoing scan"); return wpa_drv_abort_scan(wpa_s, wpa_s->curr_scan_cookie); } wpa_dbg(wpa_s, MSG_DEBUG, "No ongoing scan/p2p-scan found to abort"); return -1; } int wpas_sched_scan_plans_set(struct wpa_supplicant *wpa_s, const char *cmd) { struct sched_scan_plan *scan_plans = NULL; const char *token, *context = NULL; unsigned int num = 0; if (!cmd) return -1; if (!cmd[0]) { wpa_printf(MSG_DEBUG, "Clear sched scan plans"); os_free(wpa_s->sched_scan_plans); wpa_s->sched_scan_plans = NULL; wpa_s->sched_scan_plans_num = 0; return 0; } while ((token = cstr_token(cmd, " ", &context))) { int ret; struct sched_scan_plan *scan_plan, *n; n = os_realloc_array(scan_plans, num + 1, sizeof(*scan_plans)); if (!n) goto fail; scan_plans = n; scan_plan = &scan_plans[num]; num++; ret = sscanf(token, "%u:%u", &scan_plan->interval, &scan_plan->iterations); if (ret <= 0 || ret > 2 || !scan_plan->interval) { wpa_printf(MSG_ERROR, "Invalid sched scan plan input: %s", token); goto fail; } if (scan_plan->interval > wpa_s->max_sched_scan_plan_interval) { wpa_printf(MSG_WARNING, "scan plan %u: Scan interval too long(%u), use the maximum allowed(%u)", num, scan_plan->interval, wpa_s->max_sched_scan_plan_interval); scan_plan->interval = wpa_s->max_sched_scan_plan_interval; } if (ret == 1) { scan_plan->iterations = 0; break; } if (!scan_plan->iterations) { wpa_printf(MSG_ERROR, "scan plan %u: Number of iterations cannot be zero", num); goto fail; } if (scan_plan->iterations > wpa_s->max_sched_scan_plan_iterations) { wpa_printf(MSG_WARNING, "scan plan %u: Too many iterations(%u), use the maximum allowed(%u)", num, scan_plan->iterations, wpa_s->max_sched_scan_plan_iterations); scan_plan->iterations = wpa_s->max_sched_scan_plan_iterations; } wpa_printf(MSG_DEBUG, "scan plan %u: interval=%u iterations=%u", num, scan_plan->interval, scan_plan->iterations); } if (!scan_plans) { wpa_printf(MSG_ERROR, "Invalid scan plans entry"); goto fail; } if (cstr_token(cmd, " ", &context) || scan_plans[num - 1].iterations) { wpa_printf(MSG_ERROR, "All scan plans but the last must specify a number of iterations"); goto fail; } wpa_printf(MSG_DEBUG, "scan plan %u (last plan): interval=%u", num, scan_plans[num - 1].interval); if (num > wpa_s->max_sched_scan_plans) { wpa_printf(MSG_WARNING, "Too many scheduled scan plans (only %u supported)", wpa_s->max_sched_scan_plans); wpa_printf(MSG_WARNING, "Use only the first %u scan plans, and the last one (in infinite loop)", wpa_s->max_sched_scan_plans - 1); os_memcpy(&scan_plans[wpa_s->max_sched_scan_plans - 1], &scan_plans[num - 1], sizeof(*scan_plans)); num = wpa_s->max_sched_scan_plans; } os_free(wpa_s->sched_scan_plans); wpa_s->sched_scan_plans = scan_plans; wpa_s->sched_scan_plans_num = num; return 0; fail: os_free(scan_plans); wpa_printf(MSG_ERROR, "invalid scan plans list"); return -1; } /** * wpas_scan_reset_sched_scan - Reset sched_scan state * @wpa_s: Pointer to wpa_supplicant data * * This function is used to cancel a running scheduled scan and to reset an * internal scan state to continue with a regular scan on the following * wpa_supplicant_req_scan() calls. */ void wpas_scan_reset_sched_scan(struct wpa_supplicant *wpa_s) { wpa_s->normal_scans = 0; if (wpa_s->sched_scanning) { wpa_s->sched_scan_timed_out = 0; wpa_s->prev_sched_ssid = NULL; wpa_supplicant_cancel_sched_scan(wpa_s); } } void wpas_scan_restart_sched_scan(struct wpa_supplicant *wpa_s) { /* simulate timeout to restart the sched scan */ wpa_s->sched_scan_timed_out = 1; wpa_s->prev_sched_ssid = NULL; wpa_supplicant_cancel_sched_scan(wpa_s); }