/* * EAP peer method: EAP-AKA (RFC 4187) and EAP-AKA' (RFC 5448) * Copyright (c) 2004-2012, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "pcsc_funcs.h" #include "crypto/crypto.h" #include "crypto/sha1.h" #include "crypto/sha256.h" #include "crypto/milenage.h" #include "eap_common/eap_sim_common.h" #include "eap_config.h" #include "eap_i.h" struct eap_aka_data { u8 ik[EAP_AKA_IK_LEN], ck[EAP_AKA_CK_LEN], res[EAP_AKA_RES_MAX_LEN]; size_t res_len; u8 nonce_s[EAP_SIM_NONCE_S_LEN]; u8 mk[EAP_SIM_MK_LEN]; u8 k_aut[EAP_AKA_PRIME_K_AUT_LEN]; u8 k_encr[EAP_SIM_K_ENCR_LEN]; u8 k_re[EAP_AKA_PRIME_K_RE_LEN]; /* EAP-AKA' only */ u8 msk[EAP_SIM_KEYING_DATA_LEN]; u8 emsk[EAP_EMSK_LEN]; u8 rand[EAP_AKA_RAND_LEN], autn[EAP_AKA_AUTN_LEN]; u8 auts[EAP_AKA_AUTS_LEN]; u8 reauth_mac[EAP_SIM_MAC_LEN]; int num_id_req, num_notification; u8 *pseudonym; size_t pseudonym_len; u8 *reauth_id; size_t reauth_id_len; int reauth; unsigned int counter, counter_too_small; u8 *last_eap_identity; size_t last_eap_identity_len; enum { CONTINUE, RESULT_SUCCESS, SUCCESS, FAILURE } state; struct wpabuf *id_msgs; int prev_id; int result_ind, use_result_ind; int use_pseudonym; u8 eap_method; u8 *network_name; size_t network_name_len; u16 kdf; int kdf_negotiation; u16 last_kdf_attrs[EAP_AKA_PRIME_KDF_MAX]; size_t last_kdf_count; int error_code; }; #ifndef CONFIG_NO_STDOUT_DEBUG static const char * eap_aka_state_txt(int state) { switch (state) { case CONTINUE: return "CONTINUE"; case RESULT_SUCCESS: return "RESULT_SUCCESS"; case SUCCESS: return "SUCCESS"; case FAILURE: return "FAILURE"; default: return "?"; } } #endif /* CONFIG_NO_STDOUT_DEBUG */ static void eap_aka_state(struct eap_aka_data *data, int state) { wpa_printf(MSG_DEBUG, "EAP-AKA: %s -> %s", eap_aka_state_txt(data->state), eap_aka_state_txt(state)); data->state = state; } static void * eap_aka_init(struct eap_sm *sm) { struct eap_aka_data *data; const char *phase1 = eap_get_config_phase1(sm); struct eap_peer_config *config = eap_get_config(sm); data = os_zalloc(sizeof(*data)); if (data == NULL) return NULL; data->eap_method = EAP_TYPE_AKA; /* Zero is a valid error code, so we need to initialize */ data->error_code = NO_EAP_METHOD_ERROR; eap_aka_state(data, CONTINUE); data->prev_id = -1; data->result_ind = phase1 && os_strstr(phase1, "result_ind=1") != NULL; data->use_pseudonym = !sm->init_phase2; if (config && config->anonymous_identity && data->use_pseudonym) { data->pseudonym = os_malloc(config->anonymous_identity_len); if (data->pseudonym) { os_memcpy(data->pseudonym, config->anonymous_identity, config->anonymous_identity_len); data->pseudonym_len = config->anonymous_identity_len; } } return data; } #ifdef EAP_AKA_PRIME static void * eap_aka_prime_init(struct eap_sm *sm) { struct eap_aka_data *data = eap_aka_init(sm); if (data == NULL) return NULL; data->eap_method = EAP_TYPE_AKA_PRIME; return data; } #endif /* EAP_AKA_PRIME */ static void eap_aka_clear_keys(struct eap_aka_data *data, int reauth) { if (!reauth) { os_memset(data->mk, 0, EAP_SIM_MK_LEN); os_memset(data->k_aut, 0, EAP_AKA_PRIME_K_AUT_LEN); os_memset(data->k_encr, 0, EAP_SIM_K_ENCR_LEN); os_memset(data->k_re, 0, EAP_AKA_PRIME_K_RE_LEN); } os_memset(data->msk, 0, EAP_SIM_KEYING_DATA_LEN); os_memset(data->emsk, 0, EAP_EMSK_LEN); os_memset(data->autn, 0, EAP_AKA_AUTN_LEN); os_memset(data->auts, 0, EAP_AKA_AUTS_LEN); } static void eap_aka_deinit(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; if (data) { os_free(data->pseudonym); os_free(data->reauth_id); os_free(data->last_eap_identity); wpabuf_free(data->id_msgs); os_free(data->network_name); eap_aka_clear_keys(data, 0); os_free(data); } } static int eap_aka_ext_sim_req(struct eap_sm *sm, struct eap_aka_data *data) { char req[200], *pos, *end; wpa_printf(MSG_DEBUG, "EAP-AKA: Use external USIM processing"); pos = req; end = pos + sizeof(req); pos += os_snprintf(pos, end - pos, "UMTS-AUTH"); pos += os_snprintf(pos, end - pos, ":"); pos += wpa_snprintf_hex(pos, end - pos, data->rand, EAP_AKA_RAND_LEN); pos += os_snprintf(pos, end - pos, ":"); wpa_snprintf_hex(pos, end - pos, data->autn, EAP_AKA_AUTN_LEN); eap_sm_request_sim(sm, req); return 1; } static int eap_aka_ext_sim_result(struct eap_sm *sm, struct eap_aka_data *data, struct eap_peer_config *conf) { char *resp, *pos; wpa_printf(MSG_DEBUG, "EAP-AKA: Use result from external USIM processing"); resp = conf->external_sim_resp; conf->external_sim_resp = NULL; if (os_strncmp(resp, "UMTS-AUTS:", 10) == 0) { pos = resp + 10; if (hexstr2bin(pos, data->auts, EAP_AKA_AUTS_LEN) < 0) goto invalid; wpa_hexdump_key(MSG_DEBUG, "EAP-AKA: AUTS", data->auts, EAP_AKA_AUTS_LEN); os_free(resp); return -2; } if (os_strncmp(resp, "UMTS-AUTH:", 10) != 0) { wpa_printf(MSG_DEBUG, "EAP-AKA: Unrecognized external USIM processing response"); os_free(resp); return -1; } pos = resp + 10; wpa_hexdump(MSG_DEBUG, "EAP-AKA: RAND", data->rand, EAP_AKA_RAND_LEN); if (hexstr2bin(pos, data->ik, EAP_AKA_IK_LEN) < 0) goto invalid; wpa_hexdump_key(MSG_DEBUG, "EAP-AKA: IK", data->ik, EAP_AKA_IK_LEN); pos += EAP_AKA_IK_LEN * 2; if (*pos != ':') goto invalid; pos++; if (hexstr2bin(pos, data->ck, EAP_AKA_CK_LEN) < 0) goto invalid; wpa_hexdump_key(MSG_DEBUG, "EAP-AKA: CK", data->ck, EAP_AKA_CK_LEN); pos += EAP_AKA_CK_LEN * 2; if (*pos != ':') goto invalid; pos++; data->res_len = os_strlen(pos) / 2; if (data->res_len > EAP_AKA_RES_MAX_LEN) { data->res_len = 0; goto invalid; } if (hexstr2bin(pos, data->res, data->res_len) < 0) goto invalid; wpa_hexdump_key(MSG_DEBUG, "EAP-AKA: RES", data->res, data->res_len); os_free(resp); return 0; invalid: wpa_printf(MSG_DEBUG, "EAP-AKA: Invalid external USIM processing UMTS-AUTH response"); os_free(resp); return -1; } static int eap_aka_umts_auth(struct eap_sm *sm, struct eap_aka_data *data) { struct eap_peer_config *conf; wpa_printf(MSG_DEBUG, "EAP-AKA: UMTS authentication algorithm"); conf = eap_get_config(sm); if (conf == NULL) return -1; if (sm->external_sim) { if (conf->external_sim_resp) return eap_aka_ext_sim_result(sm, data, conf); else return eap_aka_ext_sim_req(sm, data); } if (conf->pcsc) { return scard_umts_auth(sm->scard_ctx, data->rand, data->autn, data->res, &data->res_len, data->ik, data->ck, data->auts); } #ifdef CONFIG_USIM_SIMULATOR if (conf->password) { u8 opc[16], k[16], sqn[6]; const char *pos; wpa_printf(MSG_DEBUG, "EAP-AKA: Use internal Milenage " "implementation for UMTS authentication"); if (conf->password_len < 78) { wpa_printf(MSG_DEBUG, "EAP-AKA: invalid Milenage " "password"); return -1; } pos = (const char *) conf->password; if (hexstr2bin(pos, k, 16)) return -1; pos += 32; if (*pos != ':') return -1; pos++; if (hexstr2bin(pos, opc, 16)) return -1; pos += 32; if (*pos != ':') return -1; pos++; if (hexstr2bin(pos, sqn, 6)) return -1; return milenage_check(opc, k, sqn, data->rand, data->autn, data->ik, data->ck, data->res, &data->res_len, data->auts); } #endif /* CONFIG_USIM_SIMULATOR */ #ifdef CONFIG_USIM_HARDCODED wpa_printf(MSG_DEBUG, "EAP-AKA: Use hardcoded Kc and SRES values for " "testing"); /* These hardcoded Kc and SRES values are used for testing. * Could consider making them configurable. */ os_memset(data->res, '2', EAP_AKA_RES_MAX_LEN); data->res_len = EAP_AKA_RES_MAX_LEN; os_memset(data->ik, '3', EAP_AKA_IK_LEN); os_memset(data->ck, '4', EAP_AKA_CK_LEN); { u8 autn[EAP_AKA_AUTN_LEN]; os_memset(autn, '1', EAP_AKA_AUTN_LEN); if (os_memcmp_const(autn, data->autn, EAP_AKA_AUTN_LEN) != 0) { wpa_printf(MSG_WARNING, "EAP-AKA: AUTN did not match " "with expected value"); return -1; } } #if 0 { static int test_resync = 1; if (test_resync) { /* Test Resynchronization */ test_resync = 0; return -2; } } #endif return 0; #else /* CONFIG_USIM_HARDCODED */ wpa_printf(MSG_DEBUG, "EAP-AKA: No UMTS authentication algorithm " "enabled"); return -1; #endif /* CONFIG_USIM_HARDCODED */ } #define CLEAR_PSEUDONYM 0x01 #define CLEAR_REAUTH_ID 0x02 #define CLEAR_EAP_ID 0x04 static void eap_aka_clear_identities(struct eap_sm *sm, struct eap_aka_data *data, int id) { if ((id & CLEAR_PSEUDONYM) && data->pseudonym) { wpa_printf(MSG_DEBUG, "EAP-AKA: forgetting old pseudonym"); os_free(data->pseudonym); data->pseudonym = NULL; data->pseudonym_len = 0; if (data->use_pseudonym) eap_set_anon_id(sm, NULL, 0); } if ((id & CLEAR_REAUTH_ID) && data->reauth_id) { wpa_printf(MSG_DEBUG, "EAP-AKA: forgetting old reauth_id"); os_free(data->reauth_id); data->reauth_id = NULL; data->reauth_id_len = 0; } if ((id & CLEAR_EAP_ID) && data->last_eap_identity) { wpa_printf(MSG_DEBUG, "EAP-AKA: forgetting old eap_id"); os_free(data->last_eap_identity); data->last_eap_identity = NULL; data->last_eap_identity_len = 0; } } static int eap_aka_learn_ids(struct eap_sm *sm, struct eap_aka_data *data, struct eap_sim_attrs *attr) { if (attr->next_pseudonym) { const u8 *identity = NULL; size_t identity_len = 0; const u8 *realm = NULL; size_t realm_len = 0; wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA: (encr) AT_NEXT_PSEUDONYM", attr->next_pseudonym, attr->next_pseudonym_len); os_free(data->pseudonym); /* Look for the realm of the permanent identity */ identity = eap_get_config_identity(sm, &identity_len); if (identity) { for (realm = identity, realm_len = identity_len; realm_len > 0; realm_len--, realm++) { if (*realm == '@') break; } } data->pseudonym = os_malloc(attr->next_pseudonym_len + realm_len); if (data->pseudonym == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: (encr) No memory for " "next pseudonym"); data->pseudonym_len = 0; return -1; } os_memcpy(data->pseudonym, attr->next_pseudonym, attr->next_pseudonym_len); if (realm_len) { os_memcpy(data->pseudonym + attr->next_pseudonym_len, realm, realm_len); } data->pseudonym_len = attr->next_pseudonym_len + realm_len; if (data->use_pseudonym) eap_set_anon_id(sm, data->pseudonym, data->pseudonym_len); } if (attr->next_reauth_id) { os_free(data->reauth_id); data->reauth_id = os_memdup(attr->next_reauth_id, attr->next_reauth_id_len); if (data->reauth_id == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: (encr) No memory for " "next reauth_id"); data->reauth_id_len = 0; return -1; } data->reauth_id_len = attr->next_reauth_id_len; wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA: (encr) AT_NEXT_REAUTH_ID", data->reauth_id, data->reauth_id_len); } return 0; } static int eap_aka_add_id_msg(struct eap_aka_data *data, const struct wpabuf *msg) { if (msg == NULL) return -1; if (data->id_msgs == NULL) { data->id_msgs = wpabuf_dup(msg); return data->id_msgs == NULL ? -1 : 0; } if (wpabuf_resize(&data->id_msgs, wpabuf_len(msg)) < 0) return -1; wpabuf_put_buf(data->id_msgs, msg); return 0; } static void eap_aka_add_checkcode(struct eap_aka_data *data, struct eap_sim_msg *msg) { const u8 *addr; size_t len; u8 hash[SHA256_MAC_LEN]; wpa_printf(MSG_DEBUG, " AT_CHECKCODE"); if (data->id_msgs == NULL) { /* * No EAP-AKA/Identity packets were exchanged - send empty * checkcode. */ eap_sim_msg_add(msg, EAP_SIM_AT_CHECKCODE, 0, NULL, 0); return; } /* Checkcode is SHA1/SHA256 hash over all EAP-AKA/Identity packets. */ addr = wpabuf_head(data->id_msgs); len = wpabuf_len(data->id_msgs); wpa_hexdump(MSG_MSGDUMP, "EAP-AKA: AT_CHECKCODE data", addr, len); #ifdef EAP_AKA_PRIME if (data->eap_method == EAP_TYPE_AKA_PRIME) sha256_vector(1, &addr, &len, hash); else #endif /* EAP_AKA_PRIME */ sha1_vector(1, &addr, &len, hash); eap_sim_msg_add(msg, EAP_SIM_AT_CHECKCODE, 0, hash, data->eap_method == EAP_TYPE_AKA_PRIME ? EAP_AKA_PRIME_CHECKCODE_LEN : EAP_AKA_CHECKCODE_LEN); } static int eap_aka_verify_checkcode(struct eap_aka_data *data, const u8 *checkcode, size_t checkcode_len) { const u8 *addr; size_t len; u8 hash[SHA256_MAC_LEN]; size_t hash_len; if (checkcode == NULL) return -1; if (data->id_msgs == NULL) { if (checkcode_len != 0) { wpa_printf(MSG_DEBUG, "EAP-AKA: Checkcode from server " "indicates that AKA/Identity messages were " "used, but they were not"); return -1; } return 0; } hash_len = data->eap_method == EAP_TYPE_AKA_PRIME ? EAP_AKA_PRIME_CHECKCODE_LEN : EAP_AKA_CHECKCODE_LEN; if (checkcode_len != hash_len) { wpa_printf(MSG_DEBUG, "EAP-AKA: Checkcode from server " "indicates that AKA/Identity message were not " "used, but they were"); return -1; } /* Checkcode is SHA1/SHA256 hash over all EAP-AKA/Identity packets. */ addr = wpabuf_head(data->id_msgs); len = wpabuf_len(data->id_msgs); #ifdef EAP_AKA_PRIME if (data->eap_method == EAP_TYPE_AKA_PRIME) sha256_vector(1, &addr, &len, hash); else #endif /* EAP_AKA_PRIME */ sha1_vector(1, &addr, &len, hash); if (os_memcmp_const(hash, checkcode, hash_len) != 0) { wpa_printf(MSG_DEBUG, "EAP-AKA: Mismatch in AT_CHECKCODE"); return -1; } return 0; } static struct wpabuf * eap_aka_client_error(struct eap_aka_data *data, u8 id, int err) { struct eap_sim_msg *msg; eap_aka_state(data, FAILURE); data->num_id_req = 0; data->num_notification = 0; wpa_printf(MSG_DEBUG, "EAP-AKA: Send Client-Error (error code %d)", err); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_CLIENT_ERROR); eap_sim_msg_add(msg, EAP_SIM_AT_CLIENT_ERROR_CODE, err, NULL, 0); return eap_sim_msg_finish(msg, data->eap_method, NULL, NULL, 0); } static struct wpabuf * eap_aka_authentication_reject(struct eap_aka_data *data, u8 id) { struct eap_sim_msg *msg; eap_aka_state(data, FAILURE); data->num_id_req = 0; data->num_notification = 0; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Authentication-Reject " "(id=%d)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_AUTHENTICATION_REJECT); return eap_sim_msg_finish(msg, data->eap_method, NULL, NULL, 0); } static struct wpabuf * eap_aka_synchronization_failure( struct eap_aka_data *data, u8 id, struct eap_sim_attrs *attr) { struct eap_sim_msg *msg; data->num_id_req = 0; data->num_notification = 0; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Synchronization-Failure " "(id=%d)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_SYNCHRONIZATION_FAILURE); wpa_printf(MSG_DEBUG, " AT_AUTS"); eap_sim_msg_add_full(msg, EAP_SIM_AT_AUTS, data->auts, EAP_AKA_AUTS_LEN); if (data->eap_method == EAP_TYPE_AKA_PRIME) { size_t i; for (i = 0; i < attr->kdf_count; i++) { wpa_printf(MSG_DEBUG, " AT_KDF"); eap_sim_msg_add(msg, EAP_SIM_AT_KDF, attr->kdf[i], NULL, 0); } } return eap_sim_msg_finish(msg, data->eap_method, NULL, NULL, 0); } static struct wpabuf * eap_aka_response_identity(struct eap_sm *sm, struct eap_aka_data *data, u8 id, enum eap_sim_id_req id_req) { const u8 *identity = NULL; size_t identity_len = 0; struct eap_sim_msg *msg; data->reauth = 0; if (id_req == ANY_ID && data->reauth_id) { identity = data->reauth_id; identity_len = data->reauth_id_len; data->reauth = 1; } else if ((id_req == ANY_ID || id_req == FULLAUTH_ID) && data->pseudonym) { identity = data->pseudonym; identity_len = data->pseudonym_len; eap_aka_clear_identities(sm, data, CLEAR_REAUTH_ID); } else if (id_req != NO_ID_REQ) { identity = eap_get_config_identity(sm, &identity_len); if (identity) { eap_aka_clear_identities(sm, data, CLEAR_PSEUDONYM | CLEAR_REAUTH_ID); } } if (id_req != NO_ID_REQ) eap_aka_clear_identities(sm, data, CLEAR_EAP_ID); wpa_printf(MSG_DEBUG, "Generating EAP-AKA Identity (id=%d)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_IDENTITY); if (identity) { wpa_hexdump_ascii(MSG_DEBUG, " AT_IDENTITY", identity, identity_len); eap_sim_msg_add(msg, EAP_SIM_AT_IDENTITY, identity_len, identity, identity_len); } return eap_sim_msg_finish(msg, data->eap_method, NULL, NULL, 0); } static struct wpabuf * eap_aka_response_challenge(struct eap_aka_data *data, u8 id) { struct eap_sim_msg *msg; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Challenge (id=%d)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_CHALLENGE); wpa_printf(MSG_DEBUG, " AT_RES"); eap_sim_msg_add(msg, EAP_SIM_AT_RES, data->res_len * 8, data->res, data->res_len); eap_aka_add_checkcode(data, msg); if (data->use_result_ind) { wpa_printf(MSG_DEBUG, " AT_RESULT_IND"); eap_sim_msg_add(msg, EAP_SIM_AT_RESULT_IND, 0, NULL, 0); } wpa_printf(MSG_DEBUG, " AT_MAC"); eap_sim_msg_add_mac(msg, EAP_SIM_AT_MAC); return eap_sim_msg_finish(msg, data->eap_method, data->k_aut, (u8 *) "", 0); } static struct wpabuf * eap_aka_response_reauth(struct eap_aka_data *data, u8 id, int counter_too_small, const u8 *nonce_s) { struct eap_sim_msg *msg; unsigned int counter; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Reauthentication (id=%d)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_REAUTHENTICATION); wpa_printf(MSG_DEBUG, " AT_IV"); wpa_printf(MSG_DEBUG, " AT_ENCR_DATA"); eap_sim_msg_add_encr_start(msg, EAP_SIM_AT_IV, EAP_SIM_AT_ENCR_DATA); if (counter_too_small) { wpa_printf(MSG_DEBUG, " *AT_COUNTER_TOO_SMALL"); eap_sim_msg_add(msg, EAP_SIM_AT_COUNTER_TOO_SMALL, 0, NULL, 0); counter = data->counter_too_small; } else counter = data->counter; wpa_printf(MSG_DEBUG, " *AT_COUNTER %d", counter); eap_sim_msg_add(msg, EAP_SIM_AT_COUNTER, counter, NULL, 0); if (eap_sim_msg_add_encr_end(msg, data->k_encr, EAP_SIM_AT_PADDING)) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to encrypt " "AT_ENCR_DATA"); eap_sim_msg_free(msg); return NULL; } eap_aka_add_checkcode(data, msg); if (data->use_result_ind) { wpa_printf(MSG_DEBUG, " AT_RESULT_IND"); eap_sim_msg_add(msg, EAP_SIM_AT_RESULT_IND, 0, NULL, 0); } wpa_printf(MSG_DEBUG, " AT_MAC"); eap_sim_msg_add_mac(msg, EAP_SIM_AT_MAC); return eap_sim_msg_finish(msg, data->eap_method, data->k_aut, nonce_s, EAP_SIM_NONCE_S_LEN); } static struct wpabuf * eap_aka_response_notification(struct eap_aka_data *data, u8 id, u16 notification) { struct eap_sim_msg *msg; u8 *k_aut = (notification & 0x4000) == 0 ? data->k_aut : NULL; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Notification (id=%d)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_NOTIFICATION); if (k_aut && data->reauth) { wpa_printf(MSG_DEBUG, " AT_IV"); wpa_printf(MSG_DEBUG, " AT_ENCR_DATA"); eap_sim_msg_add_encr_start(msg, EAP_SIM_AT_IV, EAP_SIM_AT_ENCR_DATA); wpa_printf(MSG_DEBUG, " *AT_COUNTER %d", data->counter); eap_sim_msg_add(msg, EAP_SIM_AT_COUNTER, data->counter, NULL, 0); if (eap_sim_msg_add_encr_end(msg, data->k_encr, EAP_SIM_AT_PADDING)) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to encrypt " "AT_ENCR_DATA"); eap_sim_msg_free(msg); return NULL; } } if (k_aut) { wpa_printf(MSG_DEBUG, " AT_MAC"); eap_sim_msg_add_mac(msg, EAP_SIM_AT_MAC); } return eap_sim_msg_finish(msg, data->eap_method, k_aut, (u8 *) "", 0); } static struct wpabuf * eap_aka_process_identity(struct eap_sm *sm, struct eap_aka_data *data, u8 id, const struct wpabuf *reqData, struct eap_sim_attrs *attr) { int id_error; struct wpabuf *buf; wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Identity"); id_error = 0; switch (attr->id_req) { case NO_ID_REQ: break; case ANY_ID: if (data->num_id_req > 0) id_error++; data->num_id_req++; break; case FULLAUTH_ID: if (data->num_id_req > 1) id_error++; data->num_id_req++; break; case PERMANENT_ID: if (data->num_id_req > 2) id_error++; data->num_id_req++; break; } if (id_error) { wpa_printf(MSG_INFO, "EAP-AKA: Too many ID requests " "used within one authentication"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } buf = eap_aka_response_identity(sm, data, id, attr->id_req); if (data->prev_id != id) { eap_aka_add_id_msg(data, reqData); eap_aka_add_id_msg(data, buf); data->prev_id = id; } return buf; } static int eap_aka_verify_mac(struct eap_aka_data *data, const struct wpabuf *req, const u8 *mac, const u8 *extra, size_t extra_len) { if (data->eap_method == EAP_TYPE_AKA_PRIME) return eap_sim_verify_mac_sha256(data->k_aut, req, mac, extra, extra_len); return eap_sim_verify_mac(data->k_aut, req, mac, extra, extra_len); } #ifdef EAP_AKA_PRIME static struct wpabuf * eap_aka_prime_kdf_select(struct eap_aka_data *data, u8 id, u16 kdf) { struct eap_sim_msg *msg; data->kdf_negotiation = 1; data->kdf = kdf; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Challenge (id=%d) (KDF " "select)", id); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, id, data->eap_method, EAP_AKA_SUBTYPE_CHALLENGE); wpa_printf(MSG_DEBUG, " AT_KDF"); eap_sim_msg_add(msg, EAP_SIM_AT_KDF, kdf, NULL, 0); return eap_sim_msg_finish(msg, data->eap_method, NULL, NULL, 0); } static struct wpabuf * eap_aka_prime_kdf_neg(struct eap_aka_data *data, u8 id, struct eap_sim_attrs *attr) { size_t i; for (i = 0; i < attr->kdf_count; i++) { if (attr->kdf[i] == EAP_AKA_PRIME_KDF) { os_memcpy(data->last_kdf_attrs, attr->kdf, sizeof(u16) * attr->kdf_count); data->last_kdf_count = attr->kdf_count; return eap_aka_prime_kdf_select(data, id, EAP_AKA_PRIME_KDF); } } /* No matching KDF found - fail authentication as if AUTN had been * incorrect */ return eap_aka_authentication_reject(data, id); } static int eap_aka_prime_kdf_valid(struct eap_aka_data *data, struct eap_sim_attrs *attr) { size_t i, j; if (attr->kdf_count == 0) return 0; /* The only allowed (and required) duplication of a KDF is the addition * of the selected KDF into the beginning of the list. */ if (data->kdf_negotiation) { /* When the peer receives the new EAP-Request/AKA'-Challenge * message, must check only requested change occurred in the * list of AT_KDF attributes. If there are any other changes, * the peer must behave like the case that AT_MAC had been * incorrect and authentication is failed. These are defined in * EAP-AKA' specification RFC 5448, Section 3.2. */ if (attr->kdf[0] != data->kdf) { wpa_printf(MSG_WARNING, "EAP-AKA': The server did not " "accept the selected KDF"); return -1; } if (attr->kdf_count > EAP_AKA_PRIME_KDF_MAX || attr->kdf_count != data->last_kdf_count + 1) { wpa_printf(MSG_WARNING, "EAP-AKA': The length of KDF attributes is wrong"); return -1; } for (i = 1; i < attr->kdf_count; i++) { if (attr->kdf[i] != data->last_kdf_attrs[i - 1]) { wpa_printf(MSG_WARNING, "EAP-AKA': The KDF attributes except selected KDF are not same as original one"); return -1; } } } for (i = data->kdf ? 1 : 0; i < attr->kdf_count; i++) { for (j = i + 1; j < attr->kdf_count; j++) { if (attr->kdf[i] == attr->kdf[j]) { wpa_printf(MSG_WARNING, "EAP-AKA': The server " "included a duplicated KDF"); return 0; } } } return 1; } #endif /* EAP_AKA_PRIME */ static struct wpabuf * eap_aka_process_challenge(struct eap_sm *sm, struct eap_aka_data *data, u8 id, const struct wpabuf *reqData, struct eap_sim_attrs *attr) { const u8 *identity; size_t identity_len; int res; struct eap_sim_attrs eattr; wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Challenge"); if (attr->checkcode && eap_aka_verify_checkcode(data, attr->checkcode, attr->checkcode_len)) { wpa_printf(MSG_WARNING, "EAP-AKA: Invalid AT_CHECKCODE in the " "message"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } #ifdef EAP_AKA_PRIME if (data->eap_method == EAP_TYPE_AKA_PRIME) { if (!attr->kdf_input || attr->kdf_input_len == 0) { wpa_printf(MSG_WARNING, "EAP-AKA': Challenge message " "did not include non-empty AT_KDF_INPUT"); /* Fail authentication as if AUTN had been incorrect */ return eap_aka_authentication_reject(data, id); } os_free(data->network_name); data->network_name = os_memdup(attr->kdf_input, attr->kdf_input_len); if (data->network_name == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA': No memory for " "storing Network Name"); return eap_aka_authentication_reject(data, id); } data->network_name_len = attr->kdf_input_len; wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA': Network Name " "(AT_KDF_INPUT)", data->network_name, data->network_name_len); /* TODO: check Network Name per 3GPP.33.402 */ res = eap_aka_prime_kdf_valid(data, attr); if (res == 0) return eap_aka_authentication_reject(data, id); else if (res == -1) return eap_aka_client_error( data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); if (attr->kdf[0] != EAP_AKA_PRIME_KDF) return eap_aka_prime_kdf_neg(data, id, attr); data->kdf = EAP_AKA_PRIME_KDF; wpa_printf(MSG_DEBUG, "EAP-AKA': KDF %d selected", data->kdf); } if (data->eap_method == EAP_TYPE_AKA && attr->bidding) { u16 flags = WPA_GET_BE16(attr->bidding); if ((flags & EAP_AKA_BIDDING_FLAG_D) && eap_allowed_method(sm, EAP_VENDOR_IETF, EAP_TYPE_AKA_PRIME)) { wpa_printf(MSG_WARNING, "EAP-AKA: Bidding down from " "AKA' to AKA detected"); /* Fail authentication as if AUTN had been incorrect */ return eap_aka_authentication_reject(data, id); } } #endif /* EAP_AKA_PRIME */ data->reauth = 0; if (!attr->mac || !attr->rand || !attr->autn) { wpa_printf(MSG_WARNING, "EAP-AKA: Challenge message " "did not include%s%s%s", !attr->mac ? " AT_MAC" : "", !attr->rand ? " AT_RAND" : "", !attr->autn ? " AT_AUTN" : ""); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } os_memcpy(data->rand, attr->rand, EAP_AKA_RAND_LEN); os_memcpy(data->autn, attr->autn, EAP_AKA_AUTN_LEN); res = eap_aka_umts_auth(sm, data); if (res == -1) { wpa_printf(MSG_WARNING, "EAP-AKA: UMTS authentication " "failed (AUTN)"); return eap_aka_authentication_reject(data, id); } else if (res == -2) { wpa_printf(MSG_WARNING, "EAP-AKA: UMTS authentication " "failed (AUTN seq# -> AUTS)"); return eap_aka_synchronization_failure(data, id, attr); } else if (res > 0) { wpa_printf(MSG_DEBUG, "EAP-AKA: Wait for external USIM processing"); return NULL; } else if (res) { wpa_printf(MSG_WARNING, "EAP-AKA: UMTS authentication failed"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } #ifdef EAP_AKA_PRIME if (data->eap_method == EAP_TYPE_AKA_PRIME) { /* Note: AUTN = (SQN ^ AK) || AMF || MAC which gives us the * needed 6-octet SQN ^ AK for CK',IK' derivation */ u16 amf = WPA_GET_BE16(data->autn + 6); if (!(amf & 0x8000)) { wpa_printf(MSG_WARNING, "EAP-AKA': AMF separation bit " "not set (AMF=0x%4x)", amf); return eap_aka_authentication_reject(data, id); } eap_aka_prime_derive_ck_ik_prime(data->ck, data->ik, data->autn, data->network_name, data->network_name_len); } #endif /* EAP_AKA_PRIME */ if (data->last_eap_identity) { identity = data->last_eap_identity; identity_len = data->last_eap_identity_len; } else if (data->pseudonym) { identity = data->pseudonym; identity_len = data->pseudonym_len; } else { struct eap_peer_config *config; config = eap_get_config(sm); if (config && config->imsi_identity) { identity = config->imsi_identity; identity_len = config->imsi_identity_len; } else { identity = eap_get_config_identity(sm, &identity_len); } } wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA: Selected identity for MK " "derivation", identity, identity_len); if (data->eap_method == EAP_TYPE_AKA_PRIME) { eap_aka_prime_derive_keys(identity, identity_len, data->ik, data->ck, data->k_encr, data->k_aut, data->k_re, data->msk, data->emsk); } else { eap_aka_derive_mk(identity, identity_len, data->ik, data->ck, data->mk); eap_sim_derive_keys(data->mk, data->k_encr, data->k_aut, data->msk, data->emsk); } if (eap_aka_verify_mac(data, reqData, attr->mac, (u8 *) "", 0)) { wpa_printf(MSG_WARNING, "EAP-AKA: Challenge message " "used invalid AT_MAC"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } /* Old reauthentication identity must not be used anymore. In * other words, if no new identities are received, full * authentication will be used on next reauthentication (using * pseudonym identity or permanent identity). */ eap_aka_clear_identities(sm, data, CLEAR_REAUTH_ID | CLEAR_EAP_ID); if (attr->encr_data) { u8 *decrypted; decrypted = eap_sim_parse_encr(data->k_encr, attr->encr_data, attr->encr_data_len, attr->iv, &eattr, 0); if (decrypted == NULL) { return eap_aka_client_error( data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } eap_aka_learn_ids(sm, data, &eattr); os_free(decrypted); } if (data->result_ind && attr->result_ind) data->use_result_ind = 1; if (data->state != FAILURE) { eap_aka_state(data, data->use_result_ind ? RESULT_SUCCESS : SUCCESS); } data->num_id_req = 0; data->num_notification = 0; /* RFC 4187 specifies that counter is initialized to one after * fullauth, but initializing it to zero makes it easier to implement * reauth verification. */ data->counter = 0; return eap_aka_response_challenge(data, id); } static int eap_aka_process_notification_reauth(struct eap_aka_data *data, struct eap_sim_attrs *attr) { struct eap_sim_attrs eattr; u8 *decrypted; if (attr->encr_data == NULL || attr->iv == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Notification message after " "reauth did not include encrypted data"); return -1; } decrypted = eap_sim_parse_encr(data->k_encr, attr->encr_data, attr->encr_data_len, attr->iv, &eattr, 0); if (decrypted == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to parse encrypted " "data from notification message"); return -1; } if (eattr.counter < 0 || (size_t) eattr.counter != data->counter) { wpa_printf(MSG_WARNING, "EAP-AKA: Counter in notification " "message does not match with counter in reauth " "message"); os_free(decrypted); return -1; } os_free(decrypted); return 0; } static int eap_aka_process_notification_auth(struct eap_aka_data *data, const struct wpabuf *reqData, struct eap_sim_attrs *attr) { if (attr->mac == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: no AT_MAC in after_auth " "Notification message"); return -1; } if (eap_aka_verify_mac(data, reqData, attr->mac, (u8 *) "", 0)) { wpa_printf(MSG_WARNING, "EAP-AKA: Notification message " "used invalid AT_MAC"); return -1; } if (data->reauth && eap_aka_process_notification_reauth(data, attr)) { wpa_printf(MSG_WARNING, "EAP-AKA: Invalid notification " "message after reauth"); return -1; } return 0; } static struct wpabuf * eap_aka_process_notification( struct eap_sm *sm, struct eap_aka_data *data, u8 id, const struct wpabuf *reqData, struct eap_sim_attrs *attr) { wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Notification"); if (data->num_notification > 0) { wpa_printf(MSG_INFO, "EAP-AKA: too many notification " "rounds (only one allowed)"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } data->num_notification++; if (attr->notification == -1) { wpa_printf(MSG_INFO, "EAP-AKA: no AT_NOTIFICATION in " "Notification message"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if ((attr->notification & 0x4000) == 0 && eap_aka_process_notification_auth(data, reqData, attr)) { return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } eap_sim_report_notification(sm->msg_ctx, attr->notification, 1); if (attr->notification >= 0 && attr->notification < 32768) { data->error_code = attr->notification; eap_aka_state(data, FAILURE); } else if (attr->notification == EAP_SIM_SUCCESS && data->state == RESULT_SUCCESS) eap_aka_state(data, SUCCESS); return eap_aka_response_notification(data, id, attr->notification); } static struct wpabuf * eap_aka_process_reauthentication( struct eap_sm *sm, struct eap_aka_data *data, u8 id, const struct wpabuf *reqData, struct eap_sim_attrs *attr) { struct eap_sim_attrs eattr; u8 *decrypted; wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Reauthentication"); if (attr->checkcode && eap_aka_verify_checkcode(data, attr->checkcode, attr->checkcode_len)) { wpa_printf(MSG_WARNING, "EAP-AKA: Invalid AT_CHECKCODE in the " "message"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (data->reauth_id == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Server is trying " "reauthentication, but no reauth_id available"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } data->reauth = 1; if (eap_aka_verify_mac(data, reqData, attr->mac, (u8 *) "", 0)) { wpa_printf(MSG_WARNING, "EAP-AKA: Reauthentication " "did not have valid AT_MAC"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } /* At this stage the received MAC has been verified. Use this MAC for * reauth Session-Id calculation if all other checks pass. * The peer does not use the local MAC but the received MAC in deriving * Session-Id. */ os_memcpy(data->reauth_mac, attr->mac, EAP_SIM_MAC_LEN); wpa_hexdump(MSG_DEBUG, "EAP-AKA: Server MAC", data->reauth_mac, EAP_SIM_MAC_LEN); if (attr->encr_data == NULL || attr->iv == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Reauthentication " "message did not include encrypted data"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } decrypted = eap_sim_parse_encr(data->k_encr, attr->encr_data, attr->encr_data_len, attr->iv, &eattr, 0); if (decrypted == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to parse encrypted " "data from reauthentication message"); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (eattr.nonce_s == NULL || eattr.counter < 0) { wpa_printf(MSG_INFO, "EAP-AKA: (encr) No%s%s in reauth packet", !eattr.nonce_s ? " AT_NONCE_S" : "", eattr.counter < 0 ? " AT_COUNTER" : ""); os_free(decrypted); return eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (eattr.counter < 0 || (size_t) eattr.counter <= data->counter) { struct wpabuf *res; wpa_printf(MSG_INFO, "EAP-AKA: (encr) Invalid counter " "(%d <= %d)", eattr.counter, data->counter); data->counter_too_small = eattr.counter; /* Reply using Re-auth w/ AT_COUNTER_TOO_SMALL. The current * reauth_id must not be used to start a new reauthentication. * However, since it was used in the last EAP-Response-Identity * packet, it has to saved for the following fullauth to be * used in MK derivation. */ os_free(data->last_eap_identity); data->last_eap_identity = data->reauth_id; data->last_eap_identity_len = data->reauth_id_len; data->reauth_id = NULL; data->reauth_id_len = 0; res = eap_aka_response_reauth(data, id, 1, eattr.nonce_s); os_free(decrypted); return res; } data->counter = eattr.counter; os_memcpy(data->nonce_s, eattr.nonce_s, EAP_SIM_NONCE_S_LEN); wpa_hexdump(MSG_DEBUG, "EAP-AKA: (encr) AT_NONCE_S", data->nonce_s, EAP_SIM_NONCE_S_LEN); if (data->eap_method == EAP_TYPE_AKA_PRIME) { eap_aka_prime_derive_keys_reauth(data->k_re, data->counter, data->reauth_id, data->reauth_id_len, data->nonce_s, data->msk, data->emsk); } else { eap_sim_derive_keys_reauth(data->counter, data->reauth_id, data->reauth_id_len, data->nonce_s, data->mk, data->msk, data->emsk); } eap_aka_clear_identities(sm, data, CLEAR_REAUTH_ID | CLEAR_EAP_ID); eap_aka_learn_ids(sm, data, &eattr); if (data->result_ind && attr->result_ind) data->use_result_ind = 1; if (data->state != FAILURE) { eap_aka_state(data, data->use_result_ind ? RESULT_SUCCESS : SUCCESS); } data->num_id_req = 0; data->num_notification = 0; if (data->counter > EAP_AKA_MAX_FAST_REAUTHS) { wpa_printf(MSG_DEBUG, "EAP-AKA: Maximum number of " "fast reauths performed - force fullauth"); eap_aka_clear_identities(sm, data, CLEAR_REAUTH_ID | CLEAR_EAP_ID); } os_free(decrypted); return eap_aka_response_reauth(data, id, 0, data->nonce_s); } static struct wpabuf * eap_aka_process(struct eap_sm *sm, void *priv, struct eap_method_ret *ret, const struct wpabuf *reqData) { struct eap_aka_data *data = priv; const struct eap_hdr *req; u8 subtype, id; struct wpabuf *res; const u8 *pos; struct eap_sim_attrs attr; size_t len; wpa_hexdump_buf(MSG_DEBUG, "EAP-AKA: EAP data", reqData); if (eap_get_config_identity(sm, &len) == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: Identity not configured"); eap_sm_request_identity(sm); ret->ignore = TRUE; return NULL; } pos = eap_hdr_validate(EAP_VENDOR_IETF, data->eap_method, reqData, &len); if (pos == NULL || len < 3) { ret->ignore = TRUE; return NULL; } req = wpabuf_head(reqData); id = req->identifier; len = be_to_host16(req->length); ret->ignore = FALSE; ret->methodState = METHOD_MAY_CONT; ret->decision = DECISION_FAIL; ret->allowNotifications = TRUE; subtype = *pos++; wpa_printf(MSG_DEBUG, "EAP-AKA: Subtype=%d", subtype); pos += 2; /* Reserved */ if (eap_sim_parse_attr(pos, wpabuf_head_u8(reqData) + len, &attr, data->eap_method == EAP_TYPE_AKA_PRIME ? 2 : 1, 0)) { res = eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); goto done; } switch (subtype) { case EAP_AKA_SUBTYPE_IDENTITY: res = eap_aka_process_identity(sm, data, id, reqData, &attr); break; case EAP_AKA_SUBTYPE_CHALLENGE: res = eap_aka_process_challenge(sm, data, id, reqData, &attr); break; case EAP_AKA_SUBTYPE_NOTIFICATION: res = eap_aka_process_notification(sm, data, id, reqData, &attr); break; case EAP_AKA_SUBTYPE_REAUTHENTICATION: res = eap_aka_process_reauthentication(sm, data, id, reqData, &attr); break; case EAP_AKA_SUBTYPE_CLIENT_ERROR: wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Client-Error"); res = eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); break; default: wpa_printf(MSG_DEBUG, "EAP-AKA: Unknown subtype=%d", subtype); res = eap_aka_client_error(data, id, EAP_AKA_UNABLE_TO_PROCESS_PACKET); break; } done: if (data->state == FAILURE) { ret->decision = DECISION_FAIL; ret->methodState = METHOD_DONE; } else if (data->state == SUCCESS) { ret->decision = data->use_result_ind ? DECISION_UNCOND_SUCC : DECISION_COND_SUCC; /* * It is possible for the server to reply with AKA * Notification, so we must allow the method to continue and * not only accept EAP-Success at this point. */ ret->methodState = data->use_result_ind ? METHOD_DONE : METHOD_MAY_CONT; } else if (data->state == RESULT_SUCCESS) ret->methodState = METHOD_CONT; if (ret->methodState == METHOD_DONE) { ret->allowNotifications = FALSE; } return res; } static Boolean eap_aka_has_reauth_data(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; return data->pseudonym || data->reauth_id; } static void eap_aka_deinit_for_reauth(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; eap_aka_clear_identities(sm, data, CLEAR_EAP_ID); data->prev_id = -1; wpabuf_free(data->id_msgs); data->id_msgs = NULL; data->use_result_ind = 0; data->kdf_negotiation = 0; eap_aka_clear_keys(data, 1); } static void * eap_aka_init_for_reauth(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; data->num_id_req = 0; data->num_notification = 0; eap_aka_state(data, CONTINUE); return priv; } static const u8 * eap_aka_get_identity(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; if (data->reauth_id) { *len = data->reauth_id_len; return data->reauth_id; } if (data->pseudonym) { *len = data->pseudonym_len; return data->pseudonym; } return NULL; } static Boolean eap_aka_isKeyAvailable(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; return data->state == SUCCESS; } static u8 * eap_aka_getKey(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; u8 *key; if (data->state != SUCCESS) return NULL; key = os_memdup(data->msk, EAP_SIM_KEYING_DATA_LEN); if (key == NULL) return NULL; *len = EAP_SIM_KEYING_DATA_LEN; return key; } static u8 * eap_aka_get_session_id(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; u8 *id; if (data->state != SUCCESS) return NULL; if (!data->reauth) *len = 1 + EAP_AKA_RAND_LEN + EAP_AKA_AUTN_LEN; else *len = 1 + EAP_SIM_NONCE_S_LEN + EAP_SIM_MAC_LEN; id = os_malloc(*len); if (id == NULL) return NULL; id[0] = data->eap_method; if (!data->reauth) { os_memcpy(id + 1, data->rand, EAP_AKA_RAND_LEN); os_memcpy(id + 1 + EAP_AKA_RAND_LEN, data->autn, EAP_AKA_AUTN_LEN); } else { os_memcpy(id + 1, data->nonce_s, EAP_SIM_NONCE_S_LEN); os_memcpy(id + 1 + EAP_SIM_NONCE_S_LEN, data->reauth_mac, EAP_SIM_MAC_LEN); } wpa_hexdump(MSG_DEBUG, "EAP-AKA: Derived Session-Id", id, *len); return id; } static u8 * eap_aka_get_emsk(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; u8 *key; if (data->state != SUCCESS) return NULL; key = os_memdup(data->emsk, EAP_EMSK_LEN); if (key == NULL) return NULL; *len = EAP_EMSK_LEN; return key; } static int eap_aka_get_error_code(void *priv) { struct eap_aka_data *data = priv; int current_data_error; if (!data) return NO_EAP_METHOD_ERROR; current_data_error = data->error_code; /* Now reset for next transaction */ data->error_code = NO_EAP_METHOD_ERROR; return current_data_error; } int eap_peer_aka_register(void) { struct eap_method *eap; eap = eap_peer_method_alloc(EAP_PEER_METHOD_INTERFACE_VERSION, EAP_VENDOR_IETF, EAP_TYPE_AKA, "AKA"); if (eap == NULL) return -1; eap->init = eap_aka_init; eap->deinit = eap_aka_deinit; eap->process = eap_aka_process; eap->isKeyAvailable = eap_aka_isKeyAvailable; eap->getKey = eap_aka_getKey; eap->getSessionId = eap_aka_get_session_id; eap->has_reauth_data = eap_aka_has_reauth_data; eap->deinit_for_reauth = eap_aka_deinit_for_reauth; eap->init_for_reauth = eap_aka_init_for_reauth; eap->get_identity = eap_aka_get_identity; eap->get_emsk = eap_aka_get_emsk; eap->get_error_code = eap_aka_get_error_code; return eap_peer_method_register(eap); } #ifdef EAP_AKA_PRIME int eap_peer_aka_prime_register(void) { struct eap_method *eap; eap = eap_peer_method_alloc(EAP_PEER_METHOD_INTERFACE_VERSION, EAP_VENDOR_IETF, EAP_TYPE_AKA_PRIME, "AKA'"); if (eap == NULL) return -1; eap->init = eap_aka_prime_init; eap->deinit = eap_aka_deinit; eap->process = eap_aka_process; eap->isKeyAvailable = eap_aka_isKeyAvailable; eap->getKey = eap_aka_getKey; eap->getSessionId = eap_aka_get_session_id; eap->has_reauth_data = eap_aka_has_reauth_data; eap->deinit_for_reauth = eap_aka_deinit_for_reauth; eap->init_for_reauth = eap_aka_init_for_reauth; eap->get_identity = eap_aka_get_identity; eap->get_emsk = eap_aka_get_emsk; eap->get_error_code = eap_aka_get_error_code; return eap_peer_method_register(eap); } #endif /* EAP_AKA_PRIME */